Wetland food webs have often been characterized as detrital-based ‘brown’ energy pyramids, whereas the relative role of autotrophic (‘green’) vs. microbial (‘brown’) energy sources falls along a continuum set by physical drivers, as well as autochthonous and allochthonous inputs (Moore et al. 2004; Evans-White & Halvorson 2017) that change with ecosystem development (Schmitz et al. 2006). In the Florida Coastal Everglades (FCE), metabolic imbalances, including the collapse of calcareous periphyton mats, begin with a loss of foundation species primary production and legacy organic matter (Gaiser et al. 2006). This process likely enhances heterotrophic microbial productivity (Schulte 2016) and the supply of detrital energy to consumers by changing bioavailable and recalcitrant carbon supplies (Baggett et al. 2013). A shift from complex periphyton communities to transient planktonic communities under elevated P exposure reduces habitat structure and animal refuges but increases ‘green’ energy supplies and edibility (Trexler et al. 2015; Naja et al. 2017). Multiple sites (n=9) within the FCE were selected to document changes in coastal food webs as a result of eutrophication and increasing hydrologic variability. The project began in 2019 and is currently ongoing.
References:
Baggett, L. P., Heck, K. L., Frankovich, T. A., Armitage, A. R., & Fourqurean, J. W. (2013). Stoichiometry, growth, and fecundity responses to nutrient enrichment by invertebrate grazers in sub-tropical turtle grass (Thalassia testudinum) meadows. Marine biology, 160, 169-180.
Evans-White, M. A., and H. M. Halvorson. 2017. Comparing the Ecological Stoichiometry in Green and Brown Food Webs – A Review and Meta-analysis of Freshwater Food Webs. Frontiers in Microbiology 8:1184.
Gaiser, E. E., Childers, D. L., Jones, R. D., Richards, J. H., Scinto, L. J., & Trexler, J. C. (2006). Periphyton responses to eutrophication in the Florida Everglades: cross‐system patterns of structural and compositional change. Limnology and Oceanography, 51(1part2), 617-630.
Moore, J. C., E. L. Berlow, D. C. Coleman, P. C. Ruiter, Q. Dong, A. Hastings, N. C. Johnson, K. S. McCann, K. Melville, P. J. Morin, K. Nadelhoffer, A. D. Rosemond, D. M. Post, J. L. Sabo, K. M. Scow, M. J. Vanni, and D. H. Wall. 2004. Detritus, trophic dynamics and biodiversity: Detritus, trophic dynamics and biodiversity. Ecology Letters 7:584–600.
Naja, M., Childers, D. L., & Gaiser, E. E. (2017). Water quality implications of hydrologic restoration alternatives in the Florida Everglades, United States. Restoration Ecology, 25, S48-S58.
Schmitz, O. J., Kalies, E. L., & Booth, M. G. (2006). Alternative dynamic regimes and trophic control of plant succession. Ecosystems, 9, 659-672.
Schulte, Nicholas O., "Controls on Benthic Microbial Community Structure and Assembly in a Karstic Coastal Wetland" (2016). FIU Electronic Theses and Dissertations. 2447. 10.25148/etd.FIDC000233
Trexler, J. C., Gaiser, E. E., Kominoski, J. S., & Sanchez, J. (2015). The role of periphyton mats in consumer community structure and function in calcareous wetlands: lessons from the Everglades. Microbiology of the everglades ecosystem, 155-179.