Phenotypically plastic organisms display alternative phenotypes in different environments. It is widely appreciated that possessing alternative phenotypes can affect fitness. However, some investigators have suggested that simply carrying the ability to be plastic could also affect fitness. Evolutionary models suggest that high costs
of plasticity could constrain the evolution of optimal phenotypes. However, costs (and limits) of plasticity are primarily hypothetical. Little empirical evidence exists to show that increased plasticity leads to reduced growth and development, leads to increased developmental instability, or limits the ability of organisms to produce more extreme phenotypes. I used half-sib families of larval wood frogs (Rana sylvatica) reared in outdoor mesocosms to examine how tadpoles altered behavioral, morphological, and life-historical traits in response to larval dragonfly predators (Anax longipes). The predators induced lower activity and the development of relatively large tails and small bodies in wood frogs. As a result, wood frogs experienced reduced growth and development. I then examined whether tadpole sibships with higher plasticity experienced fitness costs (above and beyond the costs of expressing a particular phenotype) and whether they were limited in producing extreme phenotypes. Fitness effects of plasticity were widespread. Depending on the trait examined and the environment experienced, increased plasticity had either positive effects, negative effects, or no effects on tadpole mass, development,
and survivorship. I found no relationship between increased plasticity and greater developmental instability. There was also no evidence that sibships with increased plasticity produced less extreme phenotypes; the most extreme trait states were always produced by the most plastic genotypes. This work suggests that costs of plasticity may be pervasive in nature and may substantially impact the evolution of optimal phenotypes in organisms that live in heterogeneous environments.