Transect-based monitoring has long been a valuable tool in ecosystem monitoring. These transects are often used to measure multiple ecosystem attributes. The line-point intercept (LPI), vegetation height, and canopy gap intercept methods comprise a set of core methods, which provide indicators of ecosystem condition. However, users struggle to design a sampling strategy that optimizes the ability to detect ecological change using transect-based methods. We assessed the sensitivity of these core methods on a one-hectare plot to transect length, number, and sampling interval to determine: 1) minimum sampling required to describe ecosystem characteristics and detect change for each method and 2) optimal transect length and number for all three methods to make recommendations for future analyses and monitoring efforts. We used data from 13 National Wind Erosion Research Network locations spanning the western US, which included 151 measurements over time across five biomes. We found that longer and increased numbers of transects were more important for reducing sampling error than increased sample intensity along transects. For all methods and indicators across plots, three 100-m transects reduced sampling error so that indicator estimates fall within an 95% confidence interval of +/- 5% for canopy gap intercept and LPI-total foliar cover, +/- 5 cm for height and +/- two species for LPI-species counts. For the same criteria at 80% confidence intervals, two 100-m transects are needed. Site-scale inference was strongly affected by sample design, consequently our understanding of ecological dynamics may be influenced by sampling decisions.