This data package was submitted to a staging environment for testing purposes only. Use of these data for anything other than testing is strongly discouraged.

This data package is not the most recent revision of a series.  (View Newest Revision)

Data Package Summary    View Full Metadata

  • Vascular Root Biomass and Production at Two Depths in an Alberta Poor Fen Subjected to Increasing Nitrogen Deposition, 2014-2015
  • Wieder, R Kelman; Villanova University
    Vitt, Dale H; Southern Illinois University
    Vile, Melanie A; Villanova University
    Graham, Jeremy A; Southern Illinois University
    Hartsock, Jeremy A; Southern Illinois University
    Popma, Jacqueline M.A.; University of Michigan
    Fillingim, Hope; Villanova University
    House, Melissa; Southern Illinois University
    Quinn, James C; Villanova University
    Scott, Kimberli D; Villanova University
    Petix, Meaghan; Southern Illinois University
    McMillen, Kelly J; Villanova University
  • 2020-03-02
  • Wieder, R.K., D.H. Vitt, M.A. Vile, J.A. Graham, J.A. Hartsock, J.M. Popma, H. Fillingim, M. House, J.C. Quinn, K.D. Scott, M. Petix, and K.J. McMillen. 2020. Vascular Root Biomass and Production at Two Depths in an Alberta Poor Fen Subjected to Increasing Nitrogen Deposition, 2014-2015 ver 1. Environmental Data Initiative. https://doi.org/DOI_PLACE_HOLDER (Accessed 2024-12-28).
  • Development of the oil sands has led to increasing atmospheric N deposition, with values as high as 17 kg N ha-1 yr-1; regional background levels <2 kg N ha-1 yr-1. To examine responses to N deposition, over five years, we experimentally applied N (as NH4NO3) to a poor fen near Mariana Lake, Alberta, at rates of 0, 5, 10, 15, 20, and 25 kg N ha-1 yr-1, plus controls (no water or N addition). In July of each year, we collected new growth of 5 species of vascular plants, returned them to the lab, cleaned them, dried and ground them, and ran them on a Flash EA 1112 Series CN Soil Analyzer Leaf N concentrations in C. calyculata, A. polifolia, and V. oxycoccos increased significantly with increasing N addition (Fig. 5). For C. calyculata and A. polifolia, there were differences in N concentrations between years, but the regression slopes describing the response to N addition were consistent across all years. Leaf N concentrations were unaffected by N addition for E. vaginatum and S. palustris, with the latter exhibiting interannual differences in leaf N concentrations. Water addition alone had no significant effect on N concentrations for any of the vascular plant species (p >= 0.67).

  • N: 55.897      S: 55.897      E: -112.094      W: -112.094
  • This data package is released to the "public domain" under Creative Commons CC0 1.0 "No Rights Reserved" (see: https://creativecommons.org/publicdomain/zero/1.0/). It is considered professional etiquette to provide attribution of the original work if this data package is shared in whole or by individual components. A generic citation is provided for this data package on the website https://portal.edirepository.org (herein "website") in the summary metadata page. Communication (and collaboration) with the creators of this data package is recommended to prevent duplicate research or publication. This data package (and its components) is made available "as is" and with no warranty of accuracy or fitness for use. The creators of this data package and the website shall not be liable for any damages resulting from misinterpretation or misuse of the data package or its components. Periodic updates of this data package may be available from the website. Thank you.
  • DOI PLACE HOLDER
  • Analyze this data package using:           

EDI is a collaboration between the University of New Mexico and the University of Wisconsin – Madison, Center for Limnology:

UNM logo UW-M logo