Decomposition of leaf litter is a major source of nutrient transfer from vegetation to soils and an important carbon flux. In northern hardwood forests, litter decomposition might be affected by nutrient availability, species composition, stand age or structure, or access by soil decomposers. We investigated these factors in four stands at the Bartlett Experimental Forest in New Hampshire that have had nitrogen and phosphorus added in full factorial design since 2011. Leaf litter of early and late successional species was collected in 2012 and deployed in bags of two mesh sizes (63 µm and 2 mm) in two young and two mature stands and collected three times over the next 2 years. Decomposition was evaluated by fitting mass loss as an exponential function of time represented by growing degree days.
Litter decomposed more quickly in the small mesh bags (p < 0.001), which excluded mesofauna. This result was surprising, but might be explained by the greater rigidity of the large mesh material making poor contact with the soil. The litter with a species composition characteristic of our young stands decomposed more quickly than the litter representing mature stands (p = 0.01 for species mix in the full model). The environment in which is was placed was not as important: Neither the age of the stand in which it was placed (p = 0.31), nor N addition (p = 0.59), P addition (p = 0.41), or the interaction of N and P addition (p = 0.13) were significant predictors of the decomposition rate, defined by fitting an exponential decay constant.
Additional detail on the MELNHE project, including a datatable of site descriptions and a pdf file with the project description and diagram of plot configuration can be found in this data package: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=344
Litter was collected by Rick Bicher and sorted by species by middle school students. Litterbags were made, filled, and weighed by middle school students. Gracie Gilcrist and Jeff Merriam generated data for the chemical analyses.
These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.