This data package was submitted to a staging environment for testing purposes only. Use of these data for anything other than testing is strongly discouraged.

This data package is not the most recent revision of a series.  (View Newest Revision)

Data Package Summary    View Full Metadata

  • Topographic position amplifies consequences of short-interval stand- replacing fires on postfire tree establishment in subalpine conifer forests
  • Hoecker, Tyler J; PhD Student; University of Wisconsin-Madison
  • 2021-05-24
  • Hoecker, T.J. 2021. Topographic position amplifies consequences of short-interval stand- replacing fires on postfire tree establishment in subalpine conifer forests ver 1. Environmental Data Initiative. https://doi.org/DOI_PLACE_HOLDER (Accessed 2024-12-28).
  • Stand-replacing fires burned at 100 to 300-year intervals for millennia in subalpine conifer forests of western North America, but forests are burning more frequently as climate warms. Postfire tree regeneration is reduced when young forests reburn before recovering from previous fires or when drought occurs during postfire years. However, whether seedling vulnerabilities to harsh microclimate conditions may be amplified in short-interval (< 30 years) fires is unclear. We conducted a field experiment to answer three questions: (1) How do germi- nation, survival, and establishment of lodgepole pine (Pinus contorta var. latifolia) and Douglas-fir (Pseudotsuga menziesii var. glauca) vary by aspect following high-severity, short-interval fires? (2) What environmental factors control germination, survival, and establishment of both species? (3) Based on our experimental evidence, what proportion of available seed would be expected to establish across landscapes that burned in these short-interval fires? One year postfire, we planted seeds of both species in north-facing, south-facing and flat plots at four sites across the Greater Yellowstone Ecosystem (Wyoming, USA). Soil microclimate was monitored continuously. Seed germination and seedling survival were measured every two weeks during the following growing season and at the beginning and end of the second growing season. Germination did not vary with aspect but increased with early-season soil moisture and temperature. Survival and establishment were low on south-facing aspects (< 1% of seeds established for both species) and declined with warmer soil temperatures and drier soils. For lodgepole pine, we predicted establishment rates of < 1% of available seed over 25% of the reburned landscape. Soil temperatures in short-interval fires were 2 ̊C warmer than similar areas of long-interval fire, with maximum temperatures frequently exceeding 40 °C. Topographic variation will mediate the consequences of short-interval fire for seedling establishment, leading to patchier tree regeneration as climate warming raises the likelihood of short-interval fires.

  • N: 44.977      S: 44.065      E: -110.28      W: -111.176
  • This information is released under the Creative Commons license - Attribution - CC BY (https://creativecommons.org/licenses/by/4.0/). The consumer of these data ("Data User" herein) is required to cite it appropriately in any publication that results from its use. The Data User should realize that these data may be actively used by others for ongoing research and that coordination may be necessary to prevent duplicate publication. The Data User is urged to contact the authors of these data if any questions about methodology or results occur. Where appropriate, the Data User is encouraged to consider collaboration or co-authorship with the authors. The Data User should realize that misinterpretation of data may occur if used out of context of the original study. While substantial efforts are made to ensure the accuracy of data and associated documentation, complete accuracy of data sets cannot be guaranteed. All data are made available "as is." The Data User should be aware, however, that data are updated periodically and it is the responsibility of the Data User to check for new versions of the data. The data authors and the repository where these data were obtained shall not be liable for damages resulting from any use or misinterpretation of the data. Thank you.
  • DOI PLACE HOLDER
  • Analyze this data package using:           

EDI is a collaboration between the University of New Mexico and the University of Wisconsin – Madison, Center for Limnology:

UNM logo UW-M logo