This data package was submitted to a staging environment for testing purposes only. Use of these data for anything other than testing is strongly discouraged.

This data package is not the most recent revision of a series.  (View Newest Revision)

Data Package Summary    View Full Metadata

  • Uranium mobility and accumulation along the Rio Paguate, Jackpile Mine in Laguna Pueblo, NM
  • Blake, Johanna M; University of New Mexico Department of Chemistry
  • 2019-12-04
  • Blake, J.M. 2019. Uranium mobility and accumulation along the Rio Paguate, Jackpile Mine in Laguna Pueblo, NM ver 1. Environmental Data Initiative. https://doi.org/DOI_PLACE_HOLDER (Accessed 2024-12-29).
  • The mobility and accumulation of uranium (U) along the Rio Paguate, adjacent to the Jackpile Mine, in Laguna Pueblo, New Mexico was investigated using aqueous chemistry, electron microprobe, X-ray diffraction and spectroscopy analyses. Given that it is not common to identify elevated concentrations of U in surface water sources, the Rio Paguate is a unique site that concerns the Laguna Pueblo community. This study aims to better understand the solid chemistry of abandoned mine waste sediments from the Jackpile Mine and identify key hydrogeological and geochemical processes that affect the fate of U along the Rio Paguate. Solid analyses using X-ray fluorescence determined that sediments located in the Jackpile Mine contain ranges of 320 to 9200 mg kg-1 U. The presence of coffinite, a U(IV)-bearing mineral, was identified by X-ray diffraction analyses in abandoned mine waste solids exposed to several decades of weathering and oxidation. The dissolution of these U-bearing minerals from abandoned mine wastes could contribute to U mobility during rain events. The U concentration in surface waters sampled closest to mine wastes are highest during the southwestern monsoon season. Samples collected from September 2014 to August 2016 showed higher U concentrations in surface water adjacent to the Jackpile Mine (35.3 to 772 mg L-1) compared with those at a wetland 4.5 kilometers downstream of the mine (5.77 to 110 mg L-1). Sediments co-located in the stream bed and bank along the reach between the mine and wetland had low U concentrations (range 1–5 mg kg-1) compared to concentrations in wetland sediments with higher organic matter (14–15%) and U concentrations (2–21 mg kg-1). Approximately 10% of the total U in wetland sediments was amenable to complexation with 1 mM sodium bicarbonate in batch experiments; a decrease of U concentration in solution was observed over time in these experiments likely due to re-association with sediments in the reactor. The findings from this study provide new insights about how hydrologic events may affect the reactivity of U present in mine waste solids exposed to surface oxidizing conditions, and the influence of organic-rich sediments on U accumulation in the Rio Paguate. Environmental impact: Uranium mobility and accumulation in the environment can affect surface water and sediment chemistry. Here, we investigated the mobility of uranium in water and accumulation on sediments along the Rio Paguate and within a wetland and reservoir 5 km south of the Jackpile Mine. Main findings of the study suggest that ore and mine waste from surficial locations of the Jackpile Mine are the source of uranium in the surface water. Additionally, the concentration of uranium in the Rio Paguate varies seasonally, with higher concentrations during the southwestern monsoon season. The uranium concentration in surface water decreases downstream of the mine and adsorption of uranium to organic-containing sediments in a wetland 5 km downstream contributes to this decrease. These results have important implications to better understand the mobility and accumulation of uranium in the environment.

  • This information is released under the Creative Commons license - Attribution - CC BY (https://creativecommons.org/licenses/by/4.0/). The consumer of these data ( Data User herein) is required to cite it appropriately in any publication that results from its use. The Data User should realize that these data may be actively used by others for ongoing research and that coordination may be necessary to prevent duplicate publication. The Data User is urged to contact the authors of these data if any questions about methodology or results occur. Where appropriate, the Data User is encouraged to consider collaboration or co-authorship with the authors. The Data User should realize that misinterpretation of data may occur if used out of context of the original study. While substantial efforts are made to ensure the accuracy of data and associated documentation, complete accuracy of data sets cannot be guaranteed. All data are made available as is. The Data User should be aware, however, that data are updated periodically and it is the responsibility of the Data User to check for new versions of the data. The data authors and the repository where these data were obtained shall not be liable for damages resulting from any use or misinterpretation of the data. Thank you.
  • DOI PLACE HOLDER
  • Analyze this data package using:           

EDI is a collaboration between the University of New Mexico and the University of Wisconsin – Madison, Center for Limnology:

UNM logo UW-M logo