This data package was submitted to a staging environment for testing purposes only. Use of these data for anything other than testing is strongly discouraged.

Data Package Summary    View Full Metadata

  • FAB 1 Forests and Biodiversity Experiment - High density diversity experiment:Soil lipid (P/NLFA) and AMF (spore and sequence) data from selected plots
  • Grossman, Jake
  • 2019-08-23
  • Grossman, J. 2019. FAB 1 Forests and Biodiversity Experiment - High density diversity experiment:Soil lipid (P/NLFA) and AMF (spore and sequence) data from selected plots ver 1. Environmental Data Initiative. https://doi.org/DOI_PLACE_HOLDER (Accessed 2024-12-27).
  • A forest biodiversity experiment (FAB) focused on trees of our region investigates the consequences of multiple dimensions of tree diversity for soil, food webs, plant communities and ecosystems. FAB is designed to unravel effects of three forms of biological diversity: species richness (SR), functional diversity (FD), and phylogenetic diversity (PD). We define FD as the representation of multiple traits of leaves, roots, seeds, and the whole organism that are correlated with species positions along gradients of resource supply, growth, and decomposition. PD is the representation of evolutionary lineages measured as the genetic distances between species. While PD and FD are often correlated, convergent evolution and adaptive differentiation can decouple them. When functional traits that drive specific ecosystem functions are not phylogenetically conserved, PD and FD may give contrasting predictions. SR, PD, and FD are not independent, and we posit that PD may help explain SR effects, and FD may help explain both PD and SR effects. Thus FAB is designed to examine the separate and combined effects of all three components of diversity for multiple ecosystem functions and to distinguish between ???sampling??? and ???complementarity??? effects of biodiversity. Due to the long lag between planting tree seedlings and determining effects of tree composition and diversity on ecosystem functioning, fewer experiments have been established to elucidate the role of biodiversity in the functioning of forest ecosystems than grassland experiments. FAB will contribute to this gap and is a member of the IDENT and TreeDiv network of forest biodiversity experiments (www.treedivnet.ugent.be). Hypotheses: 1. PD, FD, and SR will all contribute to increased productivity, stability, and diversity of other trophic levels (herbivores, predators, parasitoids, soil microbes, soil flora and fauna) as well as to greater soil C sequestration. 2. Because PD incorporates both the number of species and measurement of their evolutionary divergence, PD will explain more of the variation in ecosystem productivity and stability than SR. Similarly, among-species FD will explain more variation in these ecosystem functions than SR or PD. 3. Plant assemblages of similar SR but comprised of increasingly divergent PD or FD will show increasing divergence in ecosystem functions. 4. Species with functional traits not yet present in a plot will more easily invade than species with traits similar to the established species. The FAB single species plots will allow us to test hypotheses about the importance of plant functional traits in influencing ecosystem properties (e.g., NPP, soil C, N mineralization) and plant-associated microbial communities. For example, we expect that plant species that increase concentrations of polyvalent soil cations (e.g., because of unique base cation chemistry or because of effects on soil acidity that influence Al and Fe solubility) will promote soil C stabilization through mineral-organic matter interactions and the formation of microaggregates that protect soil C from decomposition.

  • N: 45.44138      S: 45.384865      E: -93.16289      W: -93.22445
  • knb-lter-cdr.683.1  (Uploaded 2019-08-23)  
  • Intellectual Rights for Cedar Creek LTER data This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. This is a human-readable summary of (and not a substitute for) the license. You are free to copy and redistribute the material in any medium or format You are free to remix, transform, and build upon the material for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. Notice - You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation. Notice - No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
  • DOI PLACE HOLDER
  • Analyze this data package using:           

EDI is a collaboration between the University of New Mexico and the University of Wisconsin – Madison, Center for Limnology:

UNM logo UW-M logo