This data package was submitted to a staging environment for testing purposes only. Use of these data for anything other than testing is strongly discouraged.

This data package is not the most recent revision of a series.  (View Newest Revision)

Data Package Summary    View Full Metadata

  • Depth patterns of gross nitrogen cycling and soil exoenzyme activities for three northern hardwood forests
  • Darby, Brigette
    Goodale, Christine L
    Chin, Nathan A
    Fuss, Colin B
    Lang, Ashley K
    Ollinger, Scott V
    Lovett, Gary M
  • 2020-04-22
  • Darby, B., C. Goodale, N. Chin, C. Fuss, A. Lang, S. Ollinger, and G. Lovett. 2020. Depth patterns of gross nitrogen cycling and soil exoenzyme activities for three northern hardwood forests ver 2. Environmental Data Initiative. https://doi.org/DOI_PLACE_HOLDER (Accessed 2025-01-01).
  • Despite the enormous size of the organic nitrogen (N) pool contained in mineral subsoils, rates of N cycling and soil exoenzyme activities are rarely measured in soils below 10 or 20 cm depth. Furthermore, assumed relationships between N mineralization rates and the activities of various decomposition exoenzymes are poorly characterized. We measured rates of gross and net N mineralization and nitrification as well as the potential activities of hydrolytic and oxidative enzymes at five soil depths (forest floor to 50 cm) in Spodosols at three hardwood forests of varying age (45 and 100 years post-harvest and old growth) at and near the Hubbard Brook Experimental Forest in New Hampshire, USA. As expected, all rates of N cycling and potential enzyme activities per unit soil mass correlated strongly with soil carbon (C) concentration, which decreased exponentially with increasing soil depth. Normalized per unit soil organic matter, N cycling rates and specific enzyme activities generally decreased little with depth within the mineral soil. Gross N mineralization rates correlated with specific activities of those enzymes that hydrolyze cellulose (β-glucosidase, cellobiohydrolase) and N-rich glucosamine polymers (N-acetylglucosaminidase), but not those that degrade protein or more complex C compounds, leading us to suggest that these N cycling measurements largely capture the N released during microbial N recycling, supported perhaps by plant C inputs rather than from decomposition of soil organic matter. Across the three stands, the youngest had a larger ratio of N- to-phosphorus-acquiring enzyme activities, consistent with expectations of greater N demand in younger than older forests. For all three stands, soil below 10 cm to 50 cm contributed 30-53% of total gross and net N cycling per unit area. Overall, even though microbial N cycling and enzyme activities per unit soil mass decreased with depth, microbial processes in subsoils contributed substantially to ecosystem-scale gross N fluxes because of the sustained microbial activity per unit soil organic matter at depth and the large size of the organic matter pool in the mineral soil. These results support the inclusion of often-ignored mineral subsoils and microbial N recycling in both ecosystem N budgets and in model simulations of N cycling and limitation, which will otherwise greatly underestimate N fluxes and the importance of microbial N dynamics.

    Despite the enormous size of the organic nitrogen (N) pool contained in mineral subsoils, rates of N cycling and soil exoenzyme activities are rarely measured in soils below 10 or 20 cm depth. Furthermore, assumed relationships between N mineralization rates and the activities of various decomposition exoenzymes are poorly characterized. We measured rates of gross and net N mineralization and nitrification as well as the potential activities of hydrolytic and oxidative enzymes at five soil depths (forest floor to 50 cm) in Spodosols at three hardwood forests of varying age (45 and 100 years post-harvest and old growth) at and near the Hubbard Brook Experimental Forest in New Hampshire, USA. As expected, all rates of N cycling and potential enzyme activities per unit soil mass correlated strongly with soil carbon (C) concentration, which decreased exponentially with increasing soil depth. Normalized per unit soil organic matter, N cycling rates and specific enzyme activities generally decreased little with depth within the mineral soil. Gross N mineralization rates correlated with specific activities of those enzymes that hydrolyze cellulose (β-glucosidase, cellobiohydrolase) and N-rich glucosamine polymers (N-acetylglucosaminidase), but not those that degrade protein or more complex C compounds, leading us to suggest that these N cycling measurements largely capture the N released during microbial N recycling, supported perhaps by plant C inputs rather than from decomposition of soil organic matter. Across the three stands, the youngest had a larger ratio of N- to-phosphorus-acquiring enzyme activities, consistent with expectations of greater N demand in younger than older forests. For all three stands, soil below 10 cm to 50 cm contributed 30-53% of total gross and net N cycling per unit area. Overall, even though microbial N cycling and enzyme activities per unit soil mass decreased with depth, microbial processes in subsoils contributed substantially to ecosystem-scale gross N fluxes because of the sustained microbial activity per unit soil organic matter at depth and the large size of the organic matter pool in the mineral soil. These results support the inclusion of often-ignored mineral subsoils and microbial N recycling in both ecosystem N budgets and in model simulations of N cycling and limitation, which will otherwise greatly underestimate N fluxes and the importance of microbial N dynamics.

    These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.

  • Geographic Coordinates
    • N: 43.95442, S: 43.95442, E: -71.73004, W: -71.73004
    • N: 43.9496, S: 43.9496, E: -71.74051, W: -71.74051
    • N: 44.00077, S: 44.00077, E: -71.85913, W: -71.85913
  • This information is released under the Creative Commons license - Attribution - CC BY (https://creativecommons.org/licenses/by/4.0/). The consumer of these data ("Data User" herein) is required to cite it appropriately in any publication that results from its use. The Data User should realize that these data may be actively used by others for ongoing research and that coordination may be necessary to prevent duplicate publication. The Data User is urged to contact the authors of these data if any questions about methodology or results occur. Where appropriate, the Data User is encouraged to consider collaboration or co-authorship with the authors. The Data User should realize that misinterpretation of data may occur if used out of context of the original study. While substantial efforts are made to ensure the accuracy of data and associated documentation, complete accuracy of data sets cannot be guaranteed. All data are made available "as is." The Data User should be aware, however, that data are updated periodically and it is the responsibility of the Data User to check for new versions of the data. The data authors and the repository where these data were obtained shall not be liable for damages resulting from any use or misinterpretation of the data. Thank you.
  • DOI PLACE HOLDER
  • Analyze this data package using:           

EDI is a collaboration between the University of New Mexico and the University of Wisconsin – Madison, Center for Limnology:

UNM logo UW-M logo