This data package was submitted to a staging environment for testing purposes only. Use of these data for anything other than testing is strongly discouraged.

Data Package Summary    View Full Metadata

  • SEV LTER: Tracking Vegetation Phenology Using PhenoCam Imagery at the Sevilleta National Wildlife Refuge, New Mexico, 2014-2024
  • Blais, Jacob J; Ph.D. Student; Northern Arizona University
    Richardson, Andrew D; Regents' Professor; Northern Arizona University
  • 2024-03-12
  • Blais, J.J. and A.D. Richardson. 2024. SEV LTER: Tracking Vegetation Phenology Using PhenoCam Imagery at the Sevilleta National Wildlife Refuge, New Mexico, 2014-2024 ver 1. Environmental Data Initiative. https://doi.org/DOI_PLACE_HOLDER (Accessed 2024-12-27).
  • As of 03/03/2024, the Sevilleta Long-Term Ecological Research Program is equipped with a total of 65 digital RGB cameras, or PhenoCams, across the Sevilleta National Wildlife Refuge. These cameras are installed on eddy covariance flux towers and at a number of precipitation manipulation experiments to track vegetation phenology and productivity across dryland ecotones. PhenoCams have been paired with eddy covariance flux tower data at the site since 2014, while some Mean-Variance Experiment PhenoCams were installed as recently as June 2023. For information on PhenoCam data processing and formatting, see Richardson et al., 2018, Scientific Data (https://doi.org/10.1038/sdata.2018.28), Seyednasrollah et al., 2019, Scientific Data (https://doi.org/10.1038/s41597-019-0229-9), and the PhenoCam Network web page (https://phenocam.nau.edu/webcam/).

    The PhenoCam Network uses imagery from digital cameras to track vegetation phenology and seasonal changes in vegetation activity in diverse ecosystems across North America and around the world. Imagery is uploaded to the PhenoCam server hosted at Northern Arizona University, where it is made publicly available in near-real time, every 30 minutes from sunrise to sunset, 365 days a year.

    The data are processed using simple image analysis tools to yield a measure of canopy greenness, from which phenological metrics are extracted, characterizing the start and end of the growing season. These transition dates have been shown to align well with on-the-ground observations at various research sites. Long-term PhenoCam data can be used to track the impact of climate variability and change on the rhythm of the seasons.

  • N: 34.417624      S: 34.191309      E: -106.515957      W: -107.080379
  • knb-lter-sev.357.1  (Uploaded 2024-03-12)  
  • This information is released under the Creative Commons license - Attribution - CC BY (https://creativecommons.org/licenses/by/4.0/). The consumer of these data ("Data User" herein) is required to cite it appropriately in any publication that results from its use. The Data User should realize that these data may be actively used by others for ongoing research and that coordination may be necessary to prevent duplicate publication. The Data User is urged to contact the authors of these data if any questions about methodology or results occur. Where appropriate, the Data User is encouraged to consider collaboration or co-authorship with the authors. The Data User should realize that misinterpretation of data may occur if used out of context of the original study. While substantial efforts are made to ensure the accuracy of data and associated documentation, complete accuracy of data sets cannot be guaranteed. All data are made available "as is." The Data User should be aware, however, that data are updated periodically and it is the responsibility of the Data User to check for new versions of the data. The data authors and the repository where these data were obtained shall not be liable for damages resulting from any use or misinterpretation of the data. Thank you.
  • DOI PLACE HOLDER
  • Analyze this data package using:           

EDI is a collaboration between the University of New Mexico and the University of Wisconsin – Madison, Center for Limnology:

UNM logo UW-M logo