Data Package Metadata   View Summary

Historical and future Lake Surface Water Temperature for 80 major lakes in Southeast Asia [LSWT-SEA]

General Information
Data Package:
Local Identifier:edi.1516.1
Title:Historical and future Lake Surface Water Temperature for 80 major lakes in Southeast Asia [LSWT-SEA]
Alternate Identifier:DOI PLACE HOLDER
Abstract:

The present dataset is part of a study delving into the intricate relationship between lake surface temperature (LSWT) and the broader context of climate change in the ecologically diverse region of Southeast Asia (SEA). Recognizing LSWT as a highly responsive indicator of climatic shifts, the research aims to shed light on the region's vulnerability to these changes. Using a suite of predictive models (namely Multilinear Regression (MLR), Multilayer perceptron (MLP), Random Forest (RF), eXtreme Gradient Boosting (XGB), Multilayer perceptron (MLP)) the study reconstructs historical LSWT trends from 1986 to 2020 and projects future scenarios until 2100, contingent upon various Representative Concentration Pathway (RCP) trajectories. Using MODIS-derived LSWT as predicted variable.

The dataset package includes the data used to carry out the research: ECMWF ERA5 and CHIRPS climatic predicting variables, MODIS-derived daytime and nighttime LSWT, historically predicted daily daytime and nighttime LSWT, future predictions of LSWT for multiple Representative Concentration Pathways (RCPs), long term historical and future trends.

Publication Date:2023-10-17
For more information:
Visit: DOI PLACE HOLDER

Time Period
Begin:
1986
End:
2100

People and Organizations
Contact:Virdis, Salvatore G.P. (Asian Institute of Technology,  Associate Professor) [  email ]
Contact:Kongwarakom, Siwat (Asian Institute of Technology, Research Assistant) [  email ]
Creator:Virdis, Salvatore G.P. (Asian Institute of Technology,  Associate Professor)
Creator:Kongwarakom, Siwat (Asian Institute of Technology, Research Assistant)
Associate:Virdis, Salvatore (Asian Institute of Technology,  Associate Professor, Data curator)
Associate:Kongwarakom, Siwat (Asian Institute of Technology, Research Assistant, Data curator)
Associate:Juneng, Liew  (Universiti Kebangsaan Malaysia,  Associate Professor, Data curator)
Associate:Padedda, Bachisio (University of Sassari,  Associate Professor, Data curator)
Associate:Shrestha, Sangam  (Asian Institute of Technology, Professor, Data curator)

Data Entities
Data Table Name:
ERA5_MODIS_LSWT_day_mk
Description:
This file presents the results of the original Mann-Kendall test applied to predicted yearly average time series of daytime lake surface water temperatures for 80 lakes located in Southeast Asia during the period from 1986 to 2020. The analysis includes significance levels of 0.01, 0.05, and 0.10.
Data Table Name:
ERA5_MODIS_LSWT_night_mk
Description:
This file presents the results of the original Mann-Kendall test applied to predicted yearly average time series of nighttime lake surface water temperatures for 80 lakes located in Southeast Asia during the period from 1986 to 2020. The analysis includes significance levels of 0.01, 0.05, and 0.10.
Data Table Name:
ERA5_MODIS_LSWT_day_prediction
Description:
Predicted daily time series of daytime lake surface water temperatures (LSWT) for 80 lakes located in Southeast Asia from 1986 to 2020. The predictor variables include all columns from column no. 3 (Latitude) to column no. 12 (Wind Speed (m/s)). The predicted LSWT values are located in columns with the _LSWT suffix.
Data Table Name:
ERA5_MODIS_LSWT_night_prediction
Description:
Predicted daily time series of nighttime lake surface water temperatures (LSWT) for 80 lakes located in Southeast Asia from 1986 to 2020. The predictor variables include all columns from column no. 3 (Latitude) to column no. 12 (Wind Speed (m/s)). The predicted LSWT values are located in columns with the _LSWT suffix.
Data Table Name:
table lake geomorphic features
Description:
Table of lake geomorphic features, with columns 4, 6 through 20 extracted from the HydroLAKES dataset
Data Table Name:
CNRM-CERFACS-CNRM-CM5_RCA4_rcp45_XGB_day_predicted
Description:
Time series of daytime lake surface water temperature predictions, using climate variables from CNRM-CERFACS-CNRM-CM5_RCA4 (RCP 4.5) as predictor variables with an extreme gradient boosting model.
Data Table Name:
CNRM-CERFACS-CNRM-CM5_RCA4_rcp85_XGB_day_predicted
Description:
Time series of daytime lake surface water temperature predictions, using climate variables from CNRM-CERFACS-CNRM-CM5_RCA4 (RCP 8.5) as predictor variables with an extreme gradient boosting model.
Data Table Name:
MOHC-HadGEM2-ES_RCA4_rcp45_XGB_day_predicted
Description:
Time series of daytime lake surface water temperature predictions, using climate variables from MOHC-HadGEM2-ES_RCA4 (RCP 4.5) as predictor variables with an extreme gradient boosting model.
Data Table Name:
MOHC-HadGEM2-ES_RCA4_rcp85_XGB_day_predicted
Description:
Time series of daytime lake surface water temperature predictions, using climate variables from MOHC-HadGEM2-ES_RCA4 (RCP 8.5) as predictor variables with an extreme gradient boosting model.
Data Table Name:
MOHC-HadGEM2-ES_RegCM4-7_rcp26_XGB_day_predicted
Description:
Time series of daytime lake surface water temperature predictions, using climate variables from MOHC-HadGEM2-ES_RegCM4-7 (RCP 2.6) as predictor variables with an extreme gradient boosting model.
Data Table Name:
MOHC-HadGEM2-ES_RegCM4-7_rcp85_XGB_day_predicted
Description:
Time series of daytime lake surface water temperature predictions, using climate variables from MOHC-HadGEM2-ES_RegCM4-7 (RCP 8.5) as predictor variables with an extreme gradient boosting model.
Data Table Name:
MPI-M-MPI-ESM-MR_RegCM4-7_rcp26_XGB_day_predicted
Description:
Time series of daytime lake surface water temperature predictions, using climate variables from MPI-M-MPI-ESM-MR_RegCM4-7 (RCP 2.6) as predictor variables with an extreme gradient boosting model.
Data Table Name:
MPI-M-MPI-ESM-MR_RegCM4-7_rcp85_XGB_day_predicted
Description:
Time series of daytime lake surface water temperature predictions, using climate variables from MPI-M-MPI-ESM-MR_RegCM4-7 (RCP 8.5) as predictor variables with an extreme gradient boosting model.
Data Table Name:
NCC-NorESM1-M_RegCM4-7_rcp26_XGB_day_predicted
Description:
Time series of daytime lake surface water temperature predictions, using climate variables from NCC-NorESM1-M_RegCM4-7 (RCP 2.6) as predictor variables with an extreme gradient boosting model.
Data Table Name:
NCC-NorESM1-M_RegCM4-7_rcp85_XGB_day_predicted
Description:
Time series of daytime lake surface water temperature predictions, using climate variables from NCC-NorESM1-M_RegCM4-7 (RCP 8.5) as predictor variables with an extreme gradient boosting model.
Data Table Name:
CNRM-CERFACS-CNRM-CM5_RCA4_rcp45_XGB_night_predicted
Description:
Time series of nighttime lake surface water temperature predictions, using climate variables from CNRM-CERFACS-CNRM-CM5_RCA4 (RCP 4.5) as predictor variables with an extreme gradient boosting model.
Data Table Name:
CNRM-CERFACS-CNRM-CM5_RCA4_rcp85_XGB_night_predicted
Description:
Time series of nighttime lake surface water temperature predictions, using climate variables from CNRM-CERFACS-CNRM-CM5_RCA4 (RCP 8.5) as predictor variables with an extreme gradient boosting model.
Data Table Name:
MOHC-HadGEM2-ES_RCA4_rcp45_XGB_night_predicted
Description:
Time series of nighttime lake surface water temperature predictions, using climate variables from MOHC-HadGEM2-ES_RCA4 (RCP 4.5) as predictor variables with an extreme gradient boosting model.
Data Table Name:
MOHC-HadGEM2-ES_RCA4_rcp85_XGB_night_predicted
Description:
Time series of nighttime lake surface water temperature predictions, using climate variables from MOHC-HadGEM2-ES_RCA4 (RCP 8.5) as predictor variables with an extreme gradient boosting model.
Data Table Name:
MOHC-HadGEM2-ES_RegCM4-7_rcp26_XGB_night_predicted
Description:
Time series of nighttime lake surface water temperature predictions, using climate variables from MOHC-HadGEM2-ES_RegCM4-7 (RCP 2.6) as predictor variables with an extreme gradient boosting model.
Data Table Name:
MOHC-HadGEM2-ES_RegCM4-7_rcp85_XGB_night_predicted
Description:
Time series of nighttime lake surface water temperature predictions, using climate variables from MOHC-HadGEM2-ES_RegCM4-7 (RCP 8.5) as predictor variables with an extreme gradient boosting model.
Data Table Name:
MPI-M-MPI-ESM-MR_RegCM4-7_rcp26_XGB_night_predicted
Description:
Time series of nighttime lake surface water temperature predictions, using climate variables from MPI-M-MPI-ESM-MR_RegCM4-7 (RCP 2.6) as predictor variables with an extreme gradient boosting model.
Data Table Name:
MPI-M-MPI-ESM-MR_RegCM4-7_rcp85_XGB_night_predicted
Description:
Time series of nighttime lake surface water temperature predictions, using climate variables from MPI-M-MPI-ESM-MR_RegCM4-7 (RCP 8.5) as predictor variables with an extreme gradient boosting model.
Data Table Name:
NCC-NorESM1-M_RegCM4-7_rcp26_XGB_night_predicted
Description:
Time series of nighttime lake surface water temperature predictions, using climate variables from NCC-NorESM1-M_RegCM4-7 (RCP 2.6) as predictor variables with an extreme gradient boosting model.
Data Table Name:
NCC-NorESM1-M_RegCM4-7_rcp85_XGB_night_predicted
Description:
Time series of nighttime lake surface water temperature predictions, using climate variables from NCC-NorESM1-M_RegCM4-7 (RCP 8.5) as predictor variables with an extreme gradient boosting model.
Detailed Metadata

Data Entities


Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/eac6240137c30ae408f5a4d3a0da542c
Name:ERA5_MODIS_LSWT_day_mk
Description:This file presents the results of the original Mann-Kendall test applied to predicted yearly average time series of daytime lake surface water temperatures for 80 lakes located in Southeast Asia during the period from 1986 to 2020. The analysis includes significance levels of 0.01, 0.05, and 0.10.
Number of Records:80
Number of Columns:16

Table Structure
Object Name:ERA5_MODIS_LSWT_day_mk.csv
Size:16478 byte
Authentication:250fa34b157f07259e8d21b37a01f479 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDLatitudeLongitudetrend_10trend_05trend_01h_10h_05h_01pzTausvar_sslopeintercept
Column Name:ID  
Latitude  
Longitude  
trend_10  
trend_05  
trend_01  
h_10  
h_05  
h_01  
p  
z  
Tau  
s  
var_s  
slope  
intercept  
Definition:HydroLAKES IDLatitude in decimal degreesLongitude in decimal degreesThe Mann-Kendall test results determine whether or not there is a monotonic upward or downward trend.The Mann-Kendall test results determine whether or not there is a monotonic upward or downward trend.The Mann-Kendall test results determine whether or not there is a monotonic upward or downward trend.The Mann-Kendall test results determine the presence or absence of a trend.The Mann-Kendall test results determine the presence or absence of a trend.The Mann-Kendall test results determine the presence or absence of a trend.p-value of the significance testNormalized test statisticsKendall TauMann-Kendal's scoreVariance STheil-Sen estimator/slopeIntercept of Kendall-Theil Robust Line
Storage Type:string  
float  
float  
string  
string  
string  
string  
string  
string  
float  
float  
float  
float  
float  
float  
float  
Measurement Type:nominalratiorationominalnominalnominalnominalnominalnominalratioratioratioratioratioratioratio
Measurement Values Domain:
Definitiontext
Unitdegree
Typereal
Unitdegree
Typereal
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Codeincreasing
DefinitionLake surface water temperature is increasing over time (significance level = 0.10)
Source
Code Definition
Codeno trend
DefinitionNo trend for lake surface water temperature (significance level = 0.10)
Source
Code Definition
Codedecreasing
DefinitionLake surface water temperature is decreasing over time (significance level = 0.10)
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Codeincreasing
DefinitionLake surface water temperature is increasing over time (significance level = 0.05)
Source
Code Definition
Codeno trend
DefinitionNo trend for lake surface water temperature (significance level = 0.05)
Source
Code Definition
Codedecreasing
DefinitionLake surface water temperature is decreasing over time (significance level = 0.05)
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Codeincreasing
DefinitionLake surface water temperature is increasing over time (significance level = 0.01)
Source
Code Definition
Codeno trend
DefinitionNo trend for lake surface water temperature (significance level = 0.01)
Source
Code Definition
Codedecreasing
DefinitionLake surface water temperature is decreasing over time (significance level = 0.01)
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeFalse
DefinitionTrend is absent (significance level = 0.10)
Source
Code Definition
CodeTrue
DefinitionTrend is present (significance level = 0.10)
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeFalse
DefinitionTrend is absent (significance level = 0.05)
Source
Code Definition
CodeTrue
DefinitionTrend is present (significance level = 0.05)
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeFalse
DefinitionTrend is absent (significance level = 0.01)
Source
Code Definition
CodeTrue
DefinitionTrend is present (significance level = 0.01)
Source
UnitUnitless
Typereal
UnitUnitless
Typereal
UnitUnitless
Typereal
UnitUnitless
Typereal
UnitUnitless
Typereal
UnitDegrees Celsius per Year
Typereal
UnitUnitless
Typereal
Missing Value Code:                                
Accuracy Report:                                
Accuracy Assessment:                                
Coverage:                                
Methods:                                

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/02b14ebe0ffe9ed537be4e5cc0baea2e
Name:ERA5_MODIS_LSWT_night_mk
Description:This file presents the results of the original Mann-Kendall test applied to predicted yearly average time series of nighttime lake surface water temperatures for 80 lakes located in Southeast Asia during the period from 1986 to 2020. The analysis includes significance levels of 0.01, 0.05, and 0.10.
Number of Records:80
Number of Columns:16

Table Structure
Object Name:ERA5_MODIS_LSWT_night_mk.csv
Size:16473 byte
Authentication:9df91e9674882d049d4ed73d5da397d9 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDLatitudeLongitudetrend_10trend_05trend_01h_10h_05h_01pzTausvar_sslopeintercept
Column Name:ID  
Latitude  
Longitude  
trend_10  
trend_05  
trend_01  
h_10  
h_05  
h_01  
p  
z  
Tau  
s  
var_s  
slope  
intercept  
Definition:HydroLAKES IDLatitude in decimal degreesLongitude in decimal degreesThe Mann-Kendall test results determine whether or not there is a monotonic upward or downward trend.The Mann-Kendall test results determine whether or not there is a monotonic upward or downward trend.The Mann-Kendall test results determine whether or not there is a monotonic upward or downward trend.The Mann-Kendall test results determine the presence or absence of a trend.The Mann-Kendall test results determine the presence or absence of a trend.The Mann-Kendall test results determine the presence or absence of a trend.p-value of the significance testNormalized test statisticsKendall TauMann-Kendal's scoreVariance STheil-Sen estimator/slopeIntercept of Kendall-Theil Robust Line
Storage Type:string  
float  
float  
string  
string  
string  
string  
string  
string  
float  
float  
float  
float  
float  
float  
float  
Measurement Type:nominalratiorationominalnominalnominalnominalnominalnominalratioratioratioratioratioratioratio
Measurement Values Domain:
Definitiontext
Unitdegree
Typereal
Unitdegree
Typereal
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Codeincreasing
DefinitionLake surface water temperature is increasing over time (significance level = 0.10)
Source
Code Definition
Codeno trend
DefinitionNo trend for lake surface water temperature (significance level = 0.10)
Source
Code Definition
Codedecreasing
DefinitionLake surface water temperature is decreasing over time (significance level = 0.10)
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Codeincreasing
DefinitionLake surface water temperature is increasing over time (significance level = 0.05)
Source
Code Definition
Codeno trend
DefinitionNo trend for lake surface water temperature (significance level = 0.05)
Source
Code Definition
Codedecreasing
DefinitionLake surface water temperature is decreasing over time (significance level = 0.05)
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Codeincreasing
DefinitionLake surface water temperature is increasing over time (significance level = 0.01)
Source
Code Definition
Codeno trend
DefinitionNo trend for lake surface water temperature (significance level = 0.01)
Source
Code Definition
Codedecreasing
DefinitionLake surface water temperature is decreasing over time (significance level = 0.01)
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeFalse
DefinitionTrend is absent (significance level = 0.10)
Source
Code Definition
CodeTrue
DefinitionTrend is present (significance level = 0.10)
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeFalse
DefinitionTrend is absent (significance level = 0.05)
Source
Code Definition
CodeTrue
DefinitionTrend is present (significance level = 0.05)
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeFalse
DefinitionTrend is absent (significance level = 0.01)
Source
Code Definition
CodeTrue
DefinitionTrend is present (significance level = 0.01)
Source
UnitUnitless
Typereal
UnitUnitless
Typereal
UnitUnitless
Typereal
UnitUnitless
Typereal
UnitUnitless
Typereal
UnitDegrees Celsius per Year
Typereal
UnitUnitless
Typereal
Missing Value Code:                                
Accuracy Report:                                
Accuracy Assessment:                                
Coverage:                                
Methods:                                

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/297b49cb5553c597209bf138d6a3172b
Name:ERA5_MODIS_LSWT_day_prediction
Description:Predicted daily time series of daytime lake surface water temperatures (LSWT) for 80 lakes located in Southeast Asia from 1986 to 2020. The predictor variables include all columns from column no. 3 (Latitude) to column no. 12 (Wind Speed (m/s)). The predicted LSWT values are located in columns with the _LSWT suffix.
Number of Records:1022720
Number of Columns:17

Table Structure
Object Name:ERA5_MODIS_LSWT_day_prediction.csv
Size:123631933 byte
Authentication:fe1b07c36eeaffab34c25d7299407630 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDateLatitudeLongitudeCloud Fraction (%)Shortwave Radiation (w/m^2)Relative Humidity (%)Rainfall (mm)Max. Temperature (C)Min. Temperature (C)Mean Temperature (C)Wind Speed (m/s)MLR_Predicted_LSWTRF_Predicted_LSWTSVR_Predicted_LSWTMLP_Predicted_LSWTXGB_Predicted_LSWT
Column Name:ID  
Date  
Latitude  
Longitude  
Cloud Fraction (%)  
Shortwave Radiation (w/m^2)  
Relative Humidity (%)  
Rainfall (mm)  
Max. Temperature (C)  
Min. Temperature (C)  
Mean Temperature (C)  
Wind Speed (m/s)  
MLR_Predicted_LSWT  
RF_Predicted_LSWT  
SVR_Predicted_LSWT  
MLP_Predicted_LSWT  
XGB_Predicted_LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatLatitude in decimal degreesLongitude in decimal degreesCloud fractionShortwave radiationRelative humidityRainfallMaximum air temperatureMinimum air temperatureMean air temperatureWind speedPredicted lake surface water temperature using a multiple linear regression modelPredicted lake surface water temperature using a random forest modelPredicted lake surface water temperature using a support vector regression modelPredicted lake surface water temperature using a multilayer perceptron modelPredicted lake surface water temperature using an extreme gradient boosting model
Storage Type:string  
dateTime  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
Measurement Type:nominaldateTimeratioratioratioratioratioratioratioratioratioratioratioratioratioratioratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitdegree
Typereal
Unitdegree
Typereal
Unitpercent
Typereal
UnitwattPerMeterSquared
Typereal
Unitpercent
Typereal
Unitmillimeter
Typereal
Unitcelsius
Typereal
Unitcelsius
Typereal
Unitcelsius
Typereal
UnitmeterPerSecond
Typereal
Unitcelsius
Typereal
Unitcelsius
Typereal
Unitcelsius
Typereal
Unitcelsius
Typereal
Unitcelsius
Typereal
Missing Value Code:                                  
Accuracy Report:                                  
Accuracy Assessment:                                  
Coverage:                                  
Methods:                                  

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/c7dc9448c4d3f1231b7a8dcd8f638894
Name:ERA5_MODIS_LSWT_night_prediction
Description:Predicted daily time series of nighttime lake surface water temperatures (LSWT) for 80 lakes located in Southeast Asia from 1986 to 2020. The predictor variables include all columns from column no. 3 (Latitude) to column no. 12 (Wind Speed (m/s)). The predicted LSWT values are located in columns with the _LSWT suffix.
Number of Records:1022720
Number of Columns:17

Table Structure
Object Name:ERA5_MODIS_LSWT_night_prediction.csv
Size:123631333 byte
Authentication:0a353dd149a3fa68c66f65141a438d3e Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDateLatitudeLongitudeCloud Fraction (%)Shortwave Radiation (w/m^2)Relative Humidity (%)Rainfall (mm)Max. Temperature (C)Min. Temperature (C)Mean Temperature (C)Wind Speed (m/s)MLR_Predicted_LSWTRF_Predicted_LSWTSVR_Predicted_LSWTMLP_Predicted_LSWTXGB_Predicted_LSWT
Column Name:ID  
Date  
Latitude  
Longitude  
Cloud Fraction (%)  
Shortwave Radiation (w/m^2)  
Relative Humidity (%)  
Rainfall (mm)  
Max. Temperature (C)  
Min. Temperature (C)  
Mean Temperature (C)  
Wind Speed (m/s)  
MLR_Predicted_LSWT  
RF_Predicted_LSWT  
SVR_Predicted_LSWT  
MLP_Predicted_LSWT  
XGB_Predicted_LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatLatitude in decimal degreesLongitude in decimal degreesCloud fractionShortwave radiationRelative humidityRainfallMaximum air temperatureMinimum air temperatureMean air temperatureWind speedPredicted lake surface water temperature using a multiple linear regression modelPredicted lake surface water temperature using a random forest modelPredicted lake surface water temperature using a support vector regression modelPredicted lake surface water temperature using a multilayer perceptron modelPredicted lake surface water temperature using an extreme gradient boosting model
Storage Type:string  
dateTime  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
Measurement Type:nominaldateTimeratioratioratioratioratioratioratioratioratioratioratioratioratioratioratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitdegree
Typereal
Unitdegree
Typereal
Unitpercent
Typereal
UnitwattPerMeterSquared
Typereal
Unitpercent
Typereal
Unitmillimeter
Typereal
Unitcelsius
Typereal
Unitcelsius
Typereal
Unitcelsius
Typereal
UnitmeterPerSecond
Typereal
Unitcelsius
Typereal
Unitcelsius
Typereal
Unitcelsius
Typereal
Unitcelsius
Typereal
Unitcelsius
Typereal
Missing Value Code:                                  
Accuracy Report:                                  
Accuracy Assessment:                                  
Coverage:                                  
Methods:                                  

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/899132406139461ccb628cdac83898ea
Name:table lake geomorphic features
Description:Table of lake geomorphic features, with columns 4, 6 through 20 extracted from the HydroLAKES dataset
Number of Records:80
Number of Columns:21

Table Structure
Object Name:table lake geomorphic features.csv
Size:9574 byte
Authentication:61fea5c6febab45b62cfbff075479eab Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 Hylak_idLatitudeLongitudeLake_nameTypeCountryContinentLake_typeLake_areaShore_lenShore_devVol_totalVol_resVol_srcDepth_avgDis_avgRes_timeElevationSlope_100Wshd_areaRegulated
Column Name:Hylak_id  
Latitude  
Longitude  
Lake_name  
Type  
Country  
Continent  
Lake_type  
Lake_area  
Shore_len  
Shore_dev  
Vol_total  
Vol_res  
Vol_src  
Depth_avg  
Dis_avg  
Res_time  
Elevation  
Slope_100  
Wshd_area  
Regulated  
Definition:HydroLAKES IDLatitude in decimal degreesLongitude in decimal degreesLake nameLake type (dam, lake, reservoir)CountryContinentLake typeLake areaLength of shorelineShoreline developmentTotal lake or reservoir volumeReported reservoir volume, or storage volume of added lake regulationData source of 'Vol_total' columnAverage lake depthAverage long-term discharge flowing through the lakeAverage residence time of the lake waterElevation of lake surfaceAverage slope within a 100 meter buffer around the lake polygonArea of the watershed associated with the lakeType of basin (regulated or unregulated by dams)
Storage Type:string  
float  
float  
string  
string  
string  
string  
string  
float  
float  
float  
float  
float  
string  
float  
float  
float  
float  
float  
float  
string  
Measurement Type:nominalratiorationominalnominalnominalnominalnominalratioratioratioratiorationominalratioratioratioratioratiorationominal
Measurement Values Domain:
Definitiontext
Unitdegree
Typereal
Unitdegree
Typereal
Definitiontext
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeDam
DefinitionDam
Source
Code Definition
CodeLake
DefinitionLake
Source
Code Definition
CodeReservoir
DefinitionReservoir
Source
Definitiontext
Definitiontext
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code1
DefinitionLake
Source
Code Definition
Code2
DefinitionReservoir
Source
Code Definition
Code3
DefinitionLake control (i.e. natural lake with regulation structure)
Source
UnitkilometerSquared
Typereal
Unitkilometer
Typereal
UnitUnitless
Typereal
Unitmillion cubic meters
Typereal
Unitmillion cubic meters
Typeinteger
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code1
Definition‘Vol_total’ is the reported total lake volume from literature
Source
Code Definition
Code2
Definition‘Vol_total’ is the reported total reservoir volume from GRanD or literature
Source
Code Definition
Code3
Definition‘Vol_total’ is the estimated total lake volume using the geostatistical modeling approach by Messager et al. (2016)
Source
Unitmeter
Typereal
UnitmeterCubedPerSecond
Typereal
Unitdays
Typereal
Unitmeters above sea level
Typeinteger
Unitdegree
Typereal
UnitkilometerSquared
Typereal
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code0
DefinitionUnregulated basin
Source
Code Definition
Code1
DefinitionRegulated basin
Source
Missing Value Code:                                          
Accuracy Report:                                          
Accuracy Assessment:                                          
Coverage:                                          
Methods:                                          

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/7161b261522bcf4a6010fc2b877493fa
Name:CNRM-CERFACS-CNRM-CM5_RCA4_rcp45_XGB_day_predicted
Description:Time series of daytime lake surface water temperature predictions, using climate variables from CNRM-CERFACS-CNRM-CM5_RCA4 (RCP 4.5) as predictor variables with an extreme gradient boosting model.
Number of Records:2775840
Number of Columns:3

Table Structure
Object Name:CNRM-CERFACS-CNRM-CM5_RCA4_rcp45_XGB_day_predicted.csv
Size:65995850 byte
Authentication:0edb348fadab56826c3f373f0d13af38 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDatePredicted LSWT
Column Name:ID  
Date  
Predicted LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatPredicted lake surface water temperature
Storage Type:string  
dateTime  
float  
Measurement Type:nominaldateTimeratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/15503bba8111b0b3b003423ab860e91f
Name:CNRM-CERFACS-CNRM-CM5_RCA4_rcp85_XGB_day_predicted
Description:Time series of daytime lake surface water temperature predictions, using climate variables from CNRM-CERFACS-CNRM-CM5_RCA4 (RCP 8.5) as predictor variables with an extreme gradient boosting model.
Number of Records:2775840
Number of Columns:3

Table Structure
Object Name:CNRM-CERFACS-CNRM-CM5_RCA4_rcp85_XGB_day_predicted.csv
Size:65994970 byte
Authentication:e4830d8228fbd7bdd697be33b9a86334 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDatePredicted LSWT
Column Name:ID  
Date  
Predicted LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatPredicted lake surface water temperature
Storage Type:string  
dateTime  
float  
Measurement Type:nominaldateTimeratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/c08e708da3a55fe73e797fb8a318ccce
Name:MOHC-HadGEM2-ES_RCA4_rcp45_XGB_day_predicted
Description:Time series of daytime lake surface water temperature predictions, using climate variables from MOHC-HadGEM2-ES_RCA4 (RCP 4.5) as predictor variables with an extreme gradient boosting model.
Number of Records:2717440
Number of Columns:3

Table Structure
Object Name:MOHC-HadGEM2-ES_RCA4_rcp45_XGB_day_predicted.csv
Size:64607652 byte
Authentication:e2757ff4e8ba07a64dd249fa0919b559 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDatePredicted LSWT
Column Name:ID  
Date  
Predicted LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatPredicted lake surface water temperature
Storage Type:string  
dateTime  
float  
Measurement Type:nominaldateTimeratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/35079c515ea514b5f9fb0897035cecad
Name:MOHC-HadGEM2-ES_RCA4_rcp85_XGB_day_predicted
Description:Time series of daytime lake surface water temperature predictions, using climate variables from MOHC-HadGEM2-ES_RCA4 (RCP 8.5) as predictor variables with an extreme gradient boosting model.
Number of Records:2717440
Number of Columns:3

Table Structure
Object Name:MOHC-HadGEM2-ES_RCA4_rcp85_XGB_day_predicted.csv
Size:64607148 byte
Authentication:281f37b3de654923573c4b7634ea15af Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDatePredicted LSWT
Column Name:ID  
Date  
Predicted LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatPredicted lake surface water temperature
Storage Type:string  
dateTime  
float  
Measurement Type:nominaldateTimeratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/546e99cdbb49be7adeed1b83a1c3064e
Name:MOHC-HadGEM2-ES_RegCM4-7_rcp26_XGB_day_predicted
Description:Time series of daytime lake surface water temperature predictions, using climate variables from MOHC-HadGEM2-ES_RegCM4-7 (RCP 2.6) as predictor variables with an extreme gradient boosting model.
Number of Records:2717440
Number of Columns:3

Table Structure
Object Name:MOHC-HadGEM2-ES_RegCM4-7_rcp26_XGB_day_predicted.csv
Size:64607298 byte
Authentication:5c80480e710df45207d6d323dc3d451f Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDatePredicted LSWT
Column Name:ID  
Date  
Predicted LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatPredicted lake surface water temperature
Storage Type:string  
dateTime  
float  
Measurement Type:nominaldateTimeratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/f58c3c33a55b6ddce18e9bfd382b2535
Name:MOHC-HadGEM2-ES_RegCM4-7_rcp85_XGB_day_predicted
Description:Time series of daytime lake surface water temperature predictions, using climate variables from MOHC-HadGEM2-ES_RegCM4-7 (RCP 8.5) as predictor variables with an extreme gradient boosting model.
Number of Records:2717440
Number of Columns:3

Table Structure
Object Name:MOHC-HadGEM2-ES_RegCM4-7_rcp85_XGB_day_predicted.csv
Size:64607508 byte
Authentication:16b0bd6b7952f5dedbe1f9d526e0f4ff Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDatePredicted LSWT
Column Name:ID  
Date  
Predicted LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatPredicted lake surface water temperature
Storage Type:string  
dateTime  
float  
Measurement Type:nominaldateTimeratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/3f319a194fe46d8a06e181c93d035af2
Name:MPI-M-MPI-ESM-MR_RegCM4-7_rcp26_XGB_day_predicted
Description:Time series of daytime lake surface water temperature predictions, using climate variables from MPI-M-MPI-ESM-MR_RegCM4-7 (RCP 2.6) as predictor variables with an extreme gradient boosting model.
Number of Records:2746640
Number of Columns:3

Table Structure
Object Name:MPI-M-MPI-ESM-MR_RegCM4-7_rcp26_XGB_day_predicted.csv
Size:65301015 byte
Authentication:858105c8f5530409bf0b89702bf60ca7 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDatePredicted LSWT
Column Name:ID  
Date  
Predicted LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatPredicted lake surface water temperature
Storage Type:string  
dateTime  
float  
Measurement Type:nominaldateTimeratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/44300b86a07ee859a8375559e42f66a4
Name:MPI-M-MPI-ESM-MR_RegCM4-7_rcp85_XGB_day_predicted
Description:Time series of daytime lake surface water temperature predictions, using climate variables from MPI-M-MPI-ESM-MR_RegCM4-7 (RCP 8.5) as predictor variables with an extreme gradient boosting model.
Number of Records:2746640
Number of Columns:3

Table Structure
Object Name:MPI-M-MPI-ESM-MR_RegCM4-7_rcp85_XGB_day_predicted.csv
Size:65300955 byte
Authentication:1d8cfdfeed64739e442cd8ca69c38466 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDatePredicted LSWT
Column Name:ID  
Date  
Predicted LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatPredicted lake surface water temperature
Storage Type:string  
dateTime  
float  
Measurement Type:nominaldateTimeratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/0f77257dcb77a8cf7ec259b0b992bcc0
Name:NCC-NorESM1-M_RegCM4-7_rcp26_XGB_day_predicted
Description:Time series of daytime lake surface water temperature predictions, using climate variables from NCC-NorESM1-M_RegCM4-7 (RCP 2.6) as predictor variables with an extreme gradient boosting model.
Number of Records:2744720
Number of Columns:3

Table Structure
Object Name:NCC-NorESM1-M_RegCM4-7_rcp26_XGB_day_predicted.csv
Size:65256464 byte
Authentication:e1c627b92dae9af9484e7d45c910a2bd Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDatePredicted LSWT
Column Name:ID  
Date  
Predicted LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatPredicted lake surface water temperature
Storage Type:string  
dateTime  
float  
Measurement Type:nominaldateTimeratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/861819d62052d9223223bb600e7660dc
Name:NCC-NorESM1-M_RegCM4-7_rcp85_XGB_day_predicted
Description:Time series of daytime lake surface water temperature predictions, using climate variables from NCC-NorESM1-M_RegCM4-7 (RCP 8.5) as predictor variables with an extreme gradient boosting model.
Number of Records:2744800
Number of Columns:3

Table Structure
Object Name:NCC-NorESM1-M_RegCM4-7_rcp85_XGB_day_predicted.csv
Size:65257752 byte
Authentication:903ac2efd68b87452ece6418f64cff43 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDatePredicted LSWT
Column Name:ID  
Date  
Predicted LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatPredicted lake surface water temperature
Storage Type:string  
dateTime  
float  
Measurement Type:nominaldateTimeratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/0fd7a8f5daafc5fb9bc04071e4f025ce
Name:CNRM-CERFACS-CNRM-CM5_RCA4_rcp45_XGB_night_predicted
Description:Time series of nighttime lake surface water temperature predictions, using climate variables from CNRM-CERFACS-CNRM-CM5_RCA4 (RCP 4.5) as predictor variables with an extreme gradient boosting model.
Number of Records:2775840
Number of Columns:3

Table Structure
Object Name:CNRM-CERFACS-CNRM-CM5_RCA4_rcp45_XGB_night_predicted.csv
Size:65993482 byte
Authentication:a0b33bc48df69cd22291a7a06efc9851 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDatePredicted LSWT
Column Name:ID  
Date  
Predicted LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatPredicted lake surface water temperature
Storage Type:string  
dateTime  
float  
Measurement Type:nominaldateTimeratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/d2c920c8ba8a7948358f0919abe23a5e
Name:CNRM-CERFACS-CNRM-CM5_RCA4_rcp85_XGB_night_predicted
Description:Time series of nighttime lake surface water temperature predictions, using climate variables from CNRM-CERFACS-CNRM-CM5_RCA4 (RCP 8.5) as predictor variables with an extreme gradient boosting model.
Number of Records:2775840
Number of Columns:3

Table Structure
Object Name:CNRM-CERFACS-CNRM-CM5_RCA4_rcp85_XGB_night_predicted.csv
Size:65994745 byte
Authentication:4f1ec6f00452149e02ed93e40916091e Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDatePredicted LSWT
Column Name:ID  
Date  
Predicted LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatPredicted lake surface water temperature
Storage Type:string  
dateTime  
float  
Measurement Type:nominaldateTimeratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/b882a11566508b310f05f4f19def91ad
Name:MOHC-HadGEM2-ES_RCA4_rcp45_XGB_night_predicted
Description:Time series of nighttime lake surface water temperature predictions, using climate variables from MOHC-HadGEM2-ES_RCA4 (RCP 4.5) as predictor variables with an extreme gradient boosting model.
Number of Records:2717440
Number of Columns:3

Table Structure
Object Name:MOHC-HadGEM2-ES_RCA4_rcp45_XGB_night_predicted.csv
Size:64605309 byte
Authentication:857e5819fe80002cb62addcdb7d36edb Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDatePredicted LSWT
Column Name:ID  
Date  
Predicted LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatPredicted lake surface water temperature
Storage Type:string  
dateTime  
float  
Measurement Type:nominaldateTimeratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/0080b7331ba9db917e07ae36705bcab7
Name:MOHC-HadGEM2-ES_RCA4_rcp85_XGB_night_predicted
Description:Time series of nighttime lake surface water temperature predictions, using climate variables from MOHC-HadGEM2-ES_RCA4 (RCP 8.5) as predictor variables with an extreme gradient boosting model.
Number of Records:2717440
Number of Columns:3

Table Structure
Object Name:MOHC-HadGEM2-ES_RCA4_rcp85_XGB_night_predicted.csv
Size:64605182 byte
Authentication:c118b9e5b8068e30c027467088ccb6b3 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDatePredicted LSWT
Column Name:ID  
Date  
Predicted LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatPredicted lake surface water temperature
Storage Type:string  
dateTime  
float  
Measurement Type:nominaldateTimeratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/f258c4ce5997aa948242a161c0957d6b
Name:MOHC-HadGEM2-ES_RegCM4-7_rcp26_XGB_night_predicted
Description:Time series of nighttime lake surface water temperature predictions, using climate variables from MOHC-HadGEM2-ES_RegCM4-7 (RCP 2.6) as predictor variables with an extreme gradient boosting model.
Number of Records:2717440
Number of Columns:3

Table Structure
Object Name:MOHC-HadGEM2-ES_RegCM4-7_rcp26_XGB_night_predicted.csv
Size:64605408 byte
Authentication:3ebc0a15fb0bf5fa59f69bad9086b2f9 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDatePredicted LSWT
Column Name:ID  
Date  
Predicted LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatPredicted lake surface water temperature
Storage Type:string  
dateTime  
float  
Measurement Type:nominaldateTimeratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/51ef14ae15dc72037984f6b38d91346d
Name:MOHC-HadGEM2-ES_RegCM4-7_rcp85_XGB_night_predicted
Description:Time series of nighttime lake surface water temperature predictions, using climate variables from MOHC-HadGEM2-ES_RegCM4-7 (RCP 8.5) as predictor variables with an extreme gradient boosting model.
Number of Records:2717440
Number of Columns:3

Table Structure
Object Name:MOHC-HadGEM2-ES_RegCM4-7_rcp85_XGB_night_predicted.csv
Size:64606283 byte
Authentication:c66752ee38ba5a4ad44e760d4d477dc1 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDatePredicted LSWT
Column Name:ID  
Date  
Predicted LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatPredicted lake surface water temperature
Storage Type:string  
dateTime  
float  
Measurement Type:nominaldateTimeratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/c4bfd52607e0a0ea0d4c426f1718c66a
Name:MPI-M-MPI-ESM-MR_RegCM4-7_rcp26_XGB_night_predicted
Description:Time series of nighttime lake surface water temperature predictions, using climate variables from MPI-M-MPI-ESM-MR_RegCM4-7 (RCP 2.6) as predictor variables with an extreme gradient boosting model.
Number of Records:2746640
Number of Columns:3

Table Structure
Object Name:MPI-M-MPI-ESM-MR_RegCM4-7_rcp26_XGB_night_predicted.csv
Size:65299961 byte
Authentication:af96d028c98391961cf04675da6c6a58 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDatePredicted LSWT
Column Name:ID  
Date  
Predicted LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatPredicted lake surface water temperature
Storage Type:string  
dateTime  
float  
Measurement Type:nominaldateTimeratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/014820567a5b939ea21f54c9e502dcf7
Name:MPI-M-MPI-ESM-MR_RegCM4-7_rcp85_XGB_night_predicted
Description:Time series of nighttime lake surface water temperature predictions, using climate variables from MPI-M-MPI-ESM-MR_RegCM4-7 (RCP 8.5) as predictor variables with an extreme gradient boosting model.
Number of Records:2746640
Number of Columns:3

Table Structure
Object Name:MPI-M-MPI-ESM-MR_RegCM4-7_rcp85_XGB_night_predicted.csv
Size:65300267 byte
Authentication:21c526295a1bc22259906f9cdee4271f Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDatePredicted LSWT
Column Name:ID  
Date  
Predicted LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatPredicted lake surface water temperature
Storage Type:string  
dateTime  
float  
Measurement Type:nominaldateTimeratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/ade2c791ce045c9d9166416e70e4e237
Name:NCC-NorESM1-M_RegCM4-7_rcp26_XGB_night_predicted
Description:Time series of nighttime lake surface water temperature predictions, using climate variables from NCC-NorESM1-M_RegCM4-7 (RCP 2.6) as predictor variables with an extreme gradient boosting model.
Number of Records:2744720
Number of Columns:3

Table Structure
Object Name:NCC-NorESM1-M_RegCM4-7_rcp26_XGB_night_predicted.csv
Size:65253381 byte
Authentication:aa9d42884bac7ea09f36bdd235d499a8 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDatePredicted LSWT
Column Name:ID  
Date  
Predicted LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatPredicted lake surface water temperature
Storage Type:string  
dateTime  
float  
Measurement Type:nominaldateTimeratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/1516/1/2bda623b97cb7c0590b2fe9c98371b6c
Name:NCC-NorESM1-M_RegCM4-7_rcp85_XGB_night_predicted
Description:Time series of nighttime lake surface water temperature predictions, using climate variables from NCC-NorESM1-M_RegCM4-7 (RCP 8.5) as predictor variables with an extreme gradient boosting model.
Number of Records:2744800
Number of Columns:3

Table Structure
Object Name:NCC-NorESM1-M_RegCM4-7_rcp85_XGB_night_predicted.csv
Size:65256102 byte
Authentication:ec9969aa99ae66631ac352b186bef2a3 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 IDDatePredicted LSWT
Column Name:ID  
Date  
Predicted LSWT  
Definition:HydroLAKES IDDate in YYYY-MM-DD formatPredicted lake surface water temperature
Storage Type:string  
dateTime  
float  
Measurement Type:nominaldateTimeratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Package Usage Rights

This information is released under the Creative Commons license - Attribution - CC BY (https://creativecommons.org/licenses/by/4.0/). The consumer of these data ("Data User" herein) is required to cite it appropriately in any publication that results from its use. The Data User should realize that these data may be actively used by others for ongoing research and that coordination may be necessary to prevent duplicate publication. The Data User is urged to contact the authors of these data if any questions about methodology or results occur. Where appropriate, the Data User is encouraged to consider collaboration or co-authorship with the authors. The Data User should realize that misinterpretation of data may occur if used out of context of the original study. While substantial efforts are made to ensure the accuracy of data and associated documentation, complete accuracy of data sets cannot be guaranteed. All data are made available "as is." The Data User should be aware, however, that data are updated periodically and it is the responsibility of the Data User to check for new versions of the data. The data authors and the repository where these data were obtained shall not be liable for damages resulting from any use or misinterpretation of the data. Thank you.

Keywords

By Thesaurus:
LTER Controlled Vocabularyclimate change
(No thesaurus)lake, trend, Lake Surface Water Temperature (LSWT), machine and deep learning, prediction

Methods and Protocols

These methods, instrumentation and/or protocols apply to all data in this dataset:

Methods and protocols used in the collection of this data package
Description:

We used a suite of predictive models (namely Multilinear Regression (MLR), Multilayer perceptron (MLP), Random Forest (RF), eXtreme Gradient Boosting (XGB), Multilayer perceptron (MLP)) the study reconstructs historical LSWT trends from 1986 to 2020 and projects future scenarios until 2100, contingent upon various Representative Concentration Pathway (RCP) trajectories. Using MODIS-derived LSWT as predicted variable.

Trend Analysis: To assess trends, we applied the Mann-Kendall test and Sen's slope estimator. The input time series is yearly average LSWT.

People and Organizations

Publishers:
Organization:Environmental Data Initiative
Email Address:
info@edirepository.org
Web Address:
https://edirepository.org
Id:https://ror.org/0330j0z60
Creators:
Individual: Salvatore G.P. Virdis
Organization:Asian Institute of Technology
Position: Associate Professor
Address:
P.O. Box 4; 58 Moo 9, Km. 42, Paholyothin Highway, Klong Luang, Pathum Thani, 12120, Thailand,
Khlong Luang, 12120 Thailand
Email Address:
virdis@ait.ac.th
Web Address:
https://ait.ac.th/people/dr-salvatore-g-p-virdis/
Id:https://orcid.org/0000-0003-3927-9494
Individual: Siwat Kongwarakom
Organization:Asian Institute of Technology
Position:Research Assistant
Email Address:
siwatkongwarakom@gmail.com
Contacts:
Individual: Salvatore G.P. Virdis
Organization:Asian Institute of Technology
Position: Associate Professor
Address:
P.O. Box 4; 58 Moo 9, Km. 42, Paholyothin Highway, Klong Luang, Pathum Thani, 12120, Thailand,
Klong Luang, 12120 Thailand
Phone:
+66 2 524 6196 (voice)
Email Address:
virdis@ait.ac.th
Web Address:
https://ait.ac.th/people/dr-salvatore-g-p-virdis/
Id:https://orcid.org/0000-0003-3927-9494
Individual: Siwat Kongwarakom
Organization:Asian Institute of Technology
Position:Research Assistant
Email Address:
siwatkongwarakom@gmail.com
Associated Parties:
Individual: Salvatore Virdis
Organization:Asian Institute of Technology
Position: Associate Professor
Email Address:
virdis@ait.ac.th
Role:Data curator
Individual: Siwat Kongwarakom
Organization:Asian Institute of Technology
Position:Research Assistant
Email Address:
siwatkongwarakom@gmail.com
Role:Data curator
Individual: Liew Juneng
Organization:Universiti Kebangsaan Malaysia
Position: Associate Professor
Email Address:
juneng@ukm.my
Role:Data curator
Individual: Bachisio Padedda
Organization:University of Sassari
Position: Associate Professor
Email Address:
bmpadedda@uniss.it
Role:Data curator
Individual: Sangam Shrestha
Organization:Asian Institute of Technology
Position:Professor
Email Address:
sangam@ait.ac.th
Role:Data curator
Metadata Providers:
Individual: Salvatore Virdis
Organization:Asian Institute of Technology
Position: Associate Professor
Email Address:
virdis@ait.ac.th
Id:https://orcid.org/0000-0003-3927-9494
Individual: Siwat Kongwarakom
Organization:Asian Institute of Technology
Position:Research Assistant
Email Address:
siwatkongwarakom@gmail.com

Temporal, Geographic and Taxonomic Coverage

Temporal, Geographic and/or Taxonomic information that applies to all data in this dataset:

Time Period
Begin:
1986
End:
2100
Geographic Region:
Description:Mainland Southeast Asia
Bounding Coordinates:
Northern:  35.0Southern:  0.8
Western:  86.0Eastern:  117.0

Project

Parent Project Information:

Title:Climate Change Risk Assessment for Southeast Asian Lakes (CCRASEAL)
Personnel:
Individual: Salvatore G.P. Virdis
Organization:Asian Institute of Technology
Position: Associate Professor
Email Address:
virdis@ait.ac.th
Id:https://orcid.org/0000-0003-3927-9494
Role:Principal Investigator
Abstract:

Southeast Asian lakes provide several ecosystem services and are an important natural resource for water supplies, industry, agriculture, shipping, fishing, and recreation. It is demonstrated that they are highly vulnerable to anthropogenic and climate threats. Scientific studies clearly demonstrated that climate change has already significantly affected the SEA region and that these impacts will continue and expand as the pace of climate change accelerates. However, a deep understanding of “if” and “how” climate change, as well as the intensification of land uses may exacerbate those impacts on such vulnerable ecosystems across the whole region is lacking.

CCRASEAL will try to detect possible linking between observed alterations to multiple-threats, to understand if, when and where threats overlap and will define and choose metrics that best quantify the effects of multiple threats and their changes under future scenarios of climate and land uses. CCRASEAL will thus design a regional-scale approach for filling existing knowledge gaps and will provide guidance for addressing the urgent management challenges posed by multiple threats in freshwater ecosystems.

Interdisciplinary in nature, the project has a strategic approach and transdisciplinary outlook to guarantee that the linkage between science and policy at the regional level will be strengthened by actively engaging academic and government partners from 5 different countries in the Indo-Burma region.

Additional Award Information:
Funder:Asia-Pacific Network for Global Change Research (APN)
Number:CRRP2020-02MY-Virdis
Title:Collaborative Regional Research Programme (CRRP)
URL:https://www.apn-gcr.org/project/climate-change-risk-assessment-for-southeast-asian-lakes-ccraseal/

Maintenance

Maintenance:
Description:

Version 1.0 completed and uploaded on 10 October 2023

Frequency:asNeeded
Other Metadata

Additional Metadata

additionalMetadata
        |___text '\n    '
        |___element 'metadata'
        |     |___text '\n      '
        |     |___element 'unitList'
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'Unitless'
        |     |     |     |  \___attribute 'name' = 'Unitless'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'million cubic meters'
        |     |     |     |  \___attribute 'name' = 'million cubic meters'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'days'
        |     |     |     |  \___attribute 'name' = 'days'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'meters above sea level'
        |     |     |     |  \___attribute 'name' = 'meters above sea level'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'Degrees Celsius per Year'
        |     |     |     |  \___attribute 'name' = 'Degrees Celsius per Year'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n      '
        |     |___text '\n    '
        |___text '\n  '

Additional Metadata

additionalMetadata
        |___text '\n    '
        |___element 'metadata'
        |     |___text '\n      '
        |     |___element 'emlEditor'
        |     |        \___attribute 'app' = 'ezEML'
        |     |        \___attribute 'release' = '2023.08.30'
        |     |___text '\n    '
        |___text '\n  '

EDI is a collaboration between the University of New Mexico and the University of Wisconsin – Madison, Center for Limnology:

UNM logo UW-M logo