Data Package Metadata   View Summary

Forecasts of Chlorophyll-a (ug/L) at Falling Creek Reservoir over 2019 and 2020 using three models with different timesteps and a null persistence model, including parameter values for all forecasts

General Information
Data Package:
Local Identifier:edi.199.3
Title:Forecasts of Chlorophyll-a (ug/L) at Falling Creek Reservoir over 2019 and 2020 using three models with different timesteps and a null persistence model, including parameter values for all forecasts
Alternate Identifier:DOI PLACE HOLDER
Abstract:

Forecasts of bulk chlorophyll-a (ug/L) were produced for Falling Creek Reservoir, a small drinking water reservoir located in Vinton, Virginia in 2019 and 2020. Forecasts were made within a Bayesian framework using an autoregressive linear model. Forecasts were produced on a daily basis with a forecast horizon of 14 days, meaning forecasts were produced up to 14 days into the future from the day they were initiated. We produced forecasts using three different models with different timesteps: a daily model, a weekly model, and a fortnightly model. Model drivers included shortwave radiation and discharge into the reservoir. All code to import data, calibrate models, and generate and analyze forecasts are available on Github at https://github.com/wwoelmer/FLARE_AR_CHLA, EcoAppsReleaseApr2021 branch. This data package is made in association with a manuscript submitted as an Article to Ecological Applications, Woelmer et al. 202X.

Publication Date:2021-04-22

Time Period
Begin:
2019-01-02
End:
2020-08-15

People and Organizations
Contact:Woelmer, Whitney M . (Virginia Tech) [  email ]
Creator:Woelmer, Whitney M . (Virginia Tech)
Creator:Thomas, R. Quinn (Virginia Tech)
Creator:Lofton, Mary E. (Virginia Tech)
Creator:McClure, Ryan P. (Virginia Tech)
Creator:Carey, Cayelan C. (Virginia Tech)

Data Entities
Data Table Name:
Example forecast output
Description:
Example forecast output
Data Table Name:
Example parameter output
Description:
Example parameter output
Data Table Name:
Example null forecast output
Description:
Example null forecast output
Other Name:
FCR forecast files
Description:
FCR forecast files
Other Name:
FCR parameter output files
Description:
FCR parameter output files
Other Name:
FCR null model files
Description:
FCR null model files
Detailed Metadata

Data Entities


Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/199/3/87e0b18b8f2e15dc1103bde186cf9b06
Name:Example forecast output
Description:Example forecast output
Number of Records:14
Number of Columns:17

Table Structure
Object Name:2019_01_02_chla_1day_uncert1.csv
Size:4112 bytes
Authentication:318a652fcf50c61d50f7a6cd0b2190a3 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:forecast_date  
forecast_mean_chl  
forecast_median_chl  
forecast_sd_chl  
forecast_CI95_upper  
forecast_CI95_lower  
forecast_max  
forecast_min  
forecast_variance  
obs_chl_EXO  
forecast_run_day  
day_in_future  
par1  
par2  
par3  
par4  
par5  
Definition:the date being forecastedmean forecast of chl in ug/Lmedian forecast of chl in ug/Lsd of the forecast of chl in ug/Lupper 95% confidence interval of the forecast of chla in ug/Llow 95% confidence interval of the forecast of chla in ug/Lmax forecast of chl in ug/Lmin forecast of chl in ug/Lvariance of forecast of chl in ug/Lobserved chl on the day being forecastedthe date the forecast was initiatedthe number of days in the future being forecast (time horizon)parameter value for the model interceptparameter value for the autoregressive chl driverparameter value for the discharge driverparameter value for the shortwave radiation driverstandard deviation of the distribution of process error
Storage Type:date  
float  
float  
float  
float  
float  
float  
float  
float  
float  
date  
float  
float  
float  
float  
float  
float  
Measurement Type:dateTimeratioratioratioratioratioratioratioratioratiodateTimeratioratioratioratioratioratio
Measurement Values Domain:
FormatYYYY_MM_DD
Precision
UnitmicrogramsPerLiter
Typereal
Min8.03447732319605 
Max11.3510281212346 
UnitmicrogramsPerLiter
Typereal
Min7.65982627005396 
Max11.3707222679729 
UnitmicrogramsPerLiter
Typereal
Min0.000164027618823925 
Max0.0397754338969087 
UnitmicrogramsPerLiter
Typereal
Min15.6508082284444 
Max16.6085803062691 
UnitmicrogramsPerLiter
Typereal
Min2.64704050750457 
Max7.74034269631555 
UnitmicrogramsPerLiter
Typereal
Min18.753012933485 
Max35.096436014061 
UnitmicrogramsPerLiter
Typereal
Min0.144864370936163 
Max5.87092733066846 
UnitmicrogramsPerLiter
Typereal
Min0.0356891955038158 
Max0.131661275659047 
UnitmicrogramsPerLiter
Typereal
Min6.60715277777778 
Max11.4123610972222 
FormatYYYY_MM_DD
Precision
UnitnominalDay
Typenatural
Min
Max14 
Unitdimensionless
Typereal
Min0.235638756938799 
Max0.235638756938799 
Unitdimensionless
Typereal
Min0.916052911517039 
Max0.916052911517039 
Unitdimensionless
Typereal
Min-0.300926923945561 
Max-0.300926923945561 
Unitdimensionless
Typereal
Min-0.000660705081677805 
Max-0.000660705081677805 
Unitdimensionless
Typereal
Min0.114744033444173 
Max0.114744033444173 
Missing Value Code:
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
Accuracy Report:                                  
Accuracy Assessment:                                  
Coverage:                                  
Methods:                                  

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/199/3/a724989ac7552ad499e924bda6f7258f
Name:Example parameter output
Description:Example parameter output
Number of Records:441
Number of Columns:6

Table Structure
Object Name:2019_01_02_ensemble_parameters_1day_uncert1.csv
Size:49299 bytes
Authentication:0efbd461a3744ec9db51efab631cbf25 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:V1  
V2  
V3  
V4  
V5  
V6  
Definition:latent chl concentration used as initial conditions in forecastparameter value for the model interceptparameter value for the autoregressive chl driverparameter value for the discharge driverparameter value for the shortwave radiation driverstandard deviation of the distribution of process error
Storage Type:float  
float  
float  
float  
float  
float  
Measurement Type:ratioratioratioratioratioratio
Measurement Values Domain:
Unitdimensionless
Typereal
Min2.21116715100731 
Max2.44711054560513 
Unitdimensionless
Typereal
Min0.191475781011527 
Max0.631409794241289 
Unitdimensionless
Typereal
Min0.716953301142914 
Max0.94901114482266 
Unitdimensionless
Typereal
Min-1.53909479605219 
Max0.924519372311224 
Unitdimensionless
Typereal
Min-0.00164761058485537 
Max-0.000291489359575752 
Unitdimensionless
Typereal
Min0.144223565637665 
Max0.197224870074287 
Missing Value Code:            
Accuracy Report:            
Accuracy Assessment:            
Coverage:            
Methods:            

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/199/3/9ec25c04a45b64d45cf4169bf761b78f
Name:Example null forecast output
Description:Example null forecast output
Number of Records:14
Number of Columns:10

Table Structure
Object Name:2019_01_02_null_summary_1day.csv
Size:2092 bytes
Authentication:faf99e1ca28a28e8e30d449d7acbde62 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:mean  
upper_CI  
lower_CI  
date  
forecast_run_day  
day_in_future  
timestep  
chla_ugL  
chla_sqrt  
residual  
Definition:mean forecast value in ug/Lupper 95% confidence interval of the forecast in ug/Llower 95% confidence interval of the forecast in ug/Ldate being forecastedday the forecast was madethe number of days into the future being forecastedthe number of timesteps being propagated into the futureobserved chl concentration on the day being forecastedobserved chl concentration in square root units on the day being forecastedresidual difference between the observed and forecasted chl in ug/L
Storage Type:float  
float  
float  
date  
date  
float  
float  
float  
float  
float  
Measurement Type:ratioratioratiodateTimedateTimeratioratioratioratioratio
Measurement Values Domain:
UnitmicrogramsPerLiter
Typereal
Min8.62817355206512 
Max9.04805364259835 
UnitmicrogramsPerLiter
Typereal
Min16.1632684909469 
Max18.7368523821758 
UnitmicrogramsPerLiter
Typereal
Min2.82074566168098 
Max3.75233939650959 
FormatYYYY_MM_DD
Precision
FormatYYYY_MM_DD hh:mm:ss
Precision
UnitnominalDay
Typenatural
Min
Max14 
UnitnominalDay
Typenatural
Min
Max14 
UnitmicrogramsPerLiter
Typereal
Min6.60715277777778 
Max11.4123610972222 
UnitmicrogramsPerLiter
Typereal
Min2.57043824624864 
Max3.37821862780108 
UnitmicrogramsPerLiter
Typereal
Min-2.17470429767395 
Max2.67810995797541 
Missing Value Code:
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
CodeNA
Explvalue is missing
Accuracy Report:                    
Accuracy Assessment:                    
Coverage:                    
Methods:                    

Non-Categorized Data Resource

Name:FCR forecast files
Entity Type:unknown
Description:FCR forecast files
Physical Structure Description:
Object Name:forecast_output_EDI.zip
Size:9543127 bytes
Authentication:b25973ed7d2dabd52cacec1849dae595 Calculated By MD5
Externally Defined Format:
Format Name:application/zip
Data:https://pasta-s.lternet.edu/package/data/eml/edi/199/3/79843c95f777e5981bfd273ca4a8034e

Non-Categorized Data Resource

Name:FCR parameter output files
Entity Type:unknown
Description:FCR parameter output files
Physical Structure Description:
Object Name:parameter_output_EDI.zip
Size:41554865 bytes
Authentication:53478e2bfd4a4d3571047192107b0ffd Calculated By MD5
Externally Defined Format:
Format Name:application/zip
Data:https://pasta-s.lternet.edu/package/data/eml/edi/199/3/acb264b8f4bcbf84ab198bf883043fd2

Non-Categorized Data Resource

Name:FCR null model files
Entity Type:unknown
Description:FCR null model files
Physical Structure Description:
Object Name:null_model_EDI.zip
Size:1151391 bytes
Authentication:dd07a448acf64b17bb5ed9c42e4aeb68 Calculated By MD5
Externally Defined Format:
Format Name:application/zip
Data:https://pasta-s.lternet.edu/package/data/eml/edi/199/3/9cffdefc892bdad430010f4333a0a1a2

Data Package Usage Rights

This information is released under the Creative Commons license - Attribution - CC BY (https://creativecommons.org/licenses/by/4.0/). The consumer of these data ("Data User" herein) is required to cite it appropriately in any publication that results from its use. The Data User should realize that these data may be actively used by others for ongoing research and that coordination may be necessary to prevent duplicate publication. The Data User is urged to contact the authors of these data if any questions about methodology or results occur. Where appropriate, the Data User is encouraged to consider collaboration or co-authorship with the authors. The Data User should realize that misinterpretation of data may occur if used out of context of the original study. While substantial efforts are made to ensure the accuracy of data and associated documentation, complete accuracy of data sets cannot be guaranteed. All data are made available "as is." The Data User should be aware, however, that data are updated periodically and it is the responsibility of the Data User to check for new versions of the data. The data authors and the repository where these data were obtained shall not be liable for damages resulting from any use or misinterpretation of the data. Thank you.

Keywords

By Thesaurus:
carey lab controlled vocabularyCarey Lab, Virginia Tech, Western Virginia Water Authority, Falling Creek Reservoir
lter controlled vocabularylakes, water quality, chlorophyll a, fluorescence, resource management, phytoplankton
cuahsi controlled vocabularylake, reservoir, reservoirs
(No thesaurus)forecast, hindcast, historical monitoring, near-term

Methods and Protocols

These methods, instrumentation and/or protocols apply to all data in this dataset:

Methods and protocols used in the collection of this data package
Description:

GENERATION OF CHLA FORECASTS: Detailed methods can be found in Woelmer et al. 20XX, submitted to Ecological Applications in April 2021. Briefly, forecasts of near-surface (~1.0 m depth) chl-a at FCR were produced for ~600 days (from 2 January 2019 to 15 August 2020) using daily, weekly, and fortnightly autoregressive (AR) linear models developed using observational sensor data from FCR. For each forecast, model driver and validation data were collected via automated sensors at the study site and wirelessly uploaded to an online data repository using secure sensor gateways. At each model time step, new data were appended to the historical training dataset and used to re-parameterize the AR models. Forecasted model driver data included shortwave radiation and forecasted discharge to the reservoir from the major inflow. Shortwave forecasts were automatically downloaded from the National Atmospheric and Oceanic Administration Global Ensemble Forecasts System (NOAA GEFS) repository. Forecasts of future discharge were modeled using both sensor discharge measurements at the inflow at FCR and NOAA forecasted precipitation as inputs (see Thomas et al. 2020 for more details). Uncertainty was propagated for five different uncertainty types (process, initial condition, parameter, and driver data, where we propagated both meteorological and discharge driver data uncertainty individually). We generated probabilistic daily forecasts with 441 ensembles which had a 1-day, 2-day, 3-day... up to 14-day time horizon, weekly forecasts which had a 1-week and 2-week (i.e., 7-day and 14-day) time horizon, and fortnightly forecasts which had a 2-week time horizon. To develop and run our forecast models, we used a combination of linear parametric and Bayesian statistical methods. We used parametric linear model selection on historical data to pick model covariates and starting parameter values. To produce forecasts, we applied our model in a Bayesian framework. All forecast output is published in this data product.

NAMING CONVENTION FOR HINDCAST FILES: Within the provided .zip folders, we have included forecast output for all three models under all uncertainty modes (defined below) (forecast_output_EDI), parameter output for all three models under uncertainty mode 1 (parameter_output_EDI), and null persistence forecast output (null_model_EDI). We also provide three example files, one for each file type contained in the three zipped folders. Naming convention for each .csv file is as follows: The forecast_output_EDI folder includes files following the convention: YYYY_MM_DD_chla_TIMESTEP_UNCERTMODE.csv The parameter_output_EDI folder includes files following the convention: YYYY_MM_DD_ensemble_parameters_TIMESTEP_UNCERTMODE.csv The null_model_EDI folder includes files following the convention: YYYY_MM_DD_null_summary_TIMESTEP.csv

TIMESTEP = 1day, 7day, or 14day depending on the timestep of the model used to make the forecast And UNCERTMODES are 1 = all uncertainty 2 = only process uncertainty 3 = only weather driver uncertainty 4 = only initial condition uncertainty 5 = only parameter uncertainty 6 = only discharge driver uncertainty

CITATIONS: Thomas, R.Q, R.J. Figueiredo, V. Daneshmand, B.J. Bookout, L. Puckett, and C.C. Carey. 2020. A near-term iterative forecasting system successfully predicts reservoir hydrodynamics and partitions uncertainty. In press at Water Resources Research. DOI: 10.1029/2019WR026138

People and Organizations

Publishers:
Organization:Environmental Data Initiative
Email Address:
info@environmentaldatainitiative.org
Web Address:
https://environmentaldatainitiative.org
Creators:
Individual: Whitney M . Woelmer
Organization:Virginia Tech
Email Address:
wwoelmer@vt.edu
Id:https://orcid.org/0000-0001-5147-3877
Individual: R. Quinn Thomas
Organization:Virginia Tech
Email Address:
rqthomas@vt.edu
Id:https://orcid.org/0000-0003-1282-7825
Individual: Mary E. Lofton
Organization:Virginia Tech
Email Address:
melofton@vt.edu
Id:https://orcid.org/0000-0003-3270-1330
Individual: Ryan P. McClure
Organization:Virginia Tech
Email Address:
ryan333@vt.edu
Id:https://orcid.org/0000-0001-6370-3852
Individual: Cayelan C. Carey
Organization:Virginia Tech
Email Address:
cayelan@vt.edu
Id:https://orcid.org/0000-0001-8835-4476
Contacts:
Individual: Whitney M . Woelmer
Organization:Virginia Tech
Email Address:
wwoelmer@vt.edu
Id:https://orcid.org/0000-0001-5147-3877

Temporal, Geographic and Taxonomic Coverage

Temporal, Geographic and/or Taxonomic information that applies to all data in this dataset:

Time Period
Begin:
2019-01-02
End:
2020-08-15
Geographic Region:
Description:Falling Creek Reservoir is located in Vinton, Virginia, USA
Bounding Coordinates:
Northern:  37.309589Southern:  37.30266
Western:  -79.839249Eastern:  -79.836009

Project

Parent Project Information:

Title:No project title to report
Personnel:
Individual: Cayelan C. Carey
Organization:Virginia Tech
Email Address:
cayelan@vt.edu
Id:https://orcid.org/0000-0001-8835-4476
Role:Principal Investigator
Funding: Western Virginia Water Authority
Related Project:
Title:SCC-IRG Track 2: Resilient Water Systems: Integrating Environmental Sensor Networks and Real-Time Forecasting to Adaptively Manage Drinking Water Quality and Build Social Trust
Personnel:
Individual: Cayelan C. Carey
Organization:Virginia Tech
Email Address:
cayelan@vt.edu
Id:https://orcid.org/0000-0001-8835-4476
Role:Principal Investigator
Funding: National Science Foundation 1737424
Related Project:
Title:Collaborative Research: CIBR: Cyberinfrastructure Enabling End-to-End Workflows for Aquatic Ecosystem Forecasting
Personnel:
Individual: Cayelan C. Carey
Organization:Virginia Tech
Email Address:
cayelan@vt.edu
Id:https://orcid.org/0000-0001-8835-4476
Role:Principal Investigator
Funding: National Science Foundation 1933016

Maintenance

Maintenance:
Description:completed
Frequency:
Other Metadata

EDI is a collaboration between the University of New Mexico and the University of Wisconsin – Madison, Center for Limnology:

UNM logo UW-M logo