Data Package Metadata   View Summary

Microbial decomposition of 13-C labeled substrates across a gradient of root density, Marcell Experimental Forest, Minnesota, USA, 2014

General Information
Data Package:
Local Identifier:edi.438.1
Title:Microbial decomposition of 13-C labeled substrates across a gradient of root density, Marcell Experimental Forest, Minnesota, USA, 2014
Alternate Identifier:DOI PLACE HOLDER
Abstract:

Roots influence microbial decomposition of organic matter. We investigated how roots influence decomposition of a simple and complex carbon (C) substrate in mesocosms in a field experiment. Mesocosms were PVC lined with mesh that varied in size, which manipulated root access to soil and produced a gradient of root density. Mesocosms either received an injection of water (control), 13C labeled starch or 13C labeled leaf material. We collected gas samples from the mesocosms and analyzed 13C-CO2, microbial biomass, and enzyme activity. Our empirical data set was compared to a rhizosphere simulation model, CORPSE, to evaluate two alternative model hypotheses: 1) microbes are generalist decomposers, and 2) microbes have different affinities for substrates and may be influenced by roots differently. Our field experiment was conducted in 2014 at Marcell Experimental Forest, MN, USA. We installed mesocosms in May and after six weeks we injected water or substrates into soil. Gas samples were collected 1, 2, 3, 4, 5, 10, 20, and 40 days after injections. Mesocosms that received the starch substrate were harvested from the field 5 days after injections and those receiving leaf material were harvested 40 days after injections. Half of the water-control mesocosm were harvested 5 and 40 days after injections to pair with the substrate mesocosm harvests. Our results suggested decomposition of leaf material was more sensitive to root density than starch. The CORPSE model simulations with microbe-substrate affinity (hypothesis 2) showed a similar pattern to the field experiment. One way that roots influence microbial decomposition is through alleviating C limitation via exudates. Overall, our results suggest that microbial decomposition of starch is not a C limited process and that root density does not alter the rate of starch decomposition. On the other hand, decomposition of more complex substrates such as leaf tissue, which contains cellulose, hemi cellulose, and lignin, may be more C limiting and therefore more sensitive to roots and root exudates.

Publication Date:2019-10-04

Time Period
Begin:
2014-04-01
End:
2014-11-30

People and Organizations
Contact:Moore, Jessica A.      M. (University of Tennessee) [  email ]
Creator:Moore, Jessica A.      M. (University of Tennessee)
Creator:Sulman, Benjamin N. (Oak Ridge National Laboratory)
Creator:Mayes, Melanie A. (Oak Ridge National Laboratory)
Creator:Patterson, Courtney M. (University of Tennessee)
Creator:Classen, Aimee T. (University of Vermont)

Data Entities
Data Table Name:
Soil, root, and 13-C activity parameters in mesocosms
Description:
Soil, root, and 13-C activity parameters in mesocosms
Detailed Metadata

Data Entities


Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/438/1/2a712d5052f9ecb7cc8bcae4a9cc3c4f
Name:Soil, root, and 13-C activity parameters in mesocosms
Description:Soil, root, and 13-C activity parameters in mesocosms
Number of Records:135
Number of Columns:46

Table Structure
Object Name:Marcell2014DataEDI.csv
Size:49684 bytes
Authentication:57014e009682f0b759bfd9312e9acc5e Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 
Column Name:UniqueID  
Exclusion  
Label  
HarvestDate  
CoreDepth  
CoreVolume  
UnsievedSoilWt  
BulkDensity  
SoilpH  
GWC  
CN  
SOC  
MOMWt  
POMWt  
perMOM  
perPOM  
LiveFineRoots  
fineroot  
SRL  
rootlength  
finerootbiomass  
mycbio  
MBC  
CO2Day1  
CO2Day2  
CO2Day3  
CO2Day4  
CO2Day5  
CO2Day10  
CO2Day_20  
CO2Day_40  
Finalresp  
d13D1  
d13D2  
d13D3  
d13D4  
d13D5  
d13D10  
d13D20  
d13D40  
FinalD13  
Bgluc  
CBH  
Agluc  
NAG  
Phos  
Definition:unique identifier for each mesocosmtreatment label for mesocosm exclusion typetreatment label for substrate additionDate mesocosm was harvested from field siteDepth of mesocosm below soil surfacevolume of mesocosm; diameter is constant but depth variestotal soil weightDry weight of soil divided by core volumepH measured 1:2 w/v in watergravimetric water content; mass of water divided by mass of fresh weight soilsoil C:N based on dry combustionSOC concentrationmass of mineral-associated organic matter; isolated via physical fractionationmass of particulate organic matter; isolated via physical fractionationpercent of MOM in SOMpercent of POM in SOMmass of fine roots (< 2mm) in total samplemass of fine roots divided by mass of soil in samplemass-specific root lengthroot length measured on scanned imagesroot biomass scaled by mass of soil in mesocosm and bulk density, scaled to 15 cm deepmycorrhizal hyphal biomass inside sand-filled bags in milligramsCarbonPerKilogrammicrobial biomass measured by fumigation-extraction in micromolsCarbonCO2 measured on day 1 of study in micromolsCarbonCO2 measured on day 2 of study in micromolsCarbonCO2 measured on day 3 of study in micromolsCarbonCO2 measured on day 4 of study in micromolsCarbonCO2 measured on day 5 of study in micromolsCarbonCO2 measured on day 10 of study in micromolsCarbonCO2 measured on day 20 of study in micromolsCarbonCO2 measured on day 40 of study in micromolsCarbonCO2 respiration used for analysis, corresponds to peak days for leaf cores and starch coresdelta C13 measured in a gas sample collected on day 1 of studydelta C13 measured in a gas sample collected on day 2 of studydelta C13 measured in a gas sample collected on day 3 of studydelta C13 measured in a gas sample collected on day 4 of studydelta C13 measured in a gas sample collected on day 5 of studydelta C13 measured in a gas sample collected on day 10 of studydelta C13 measured in a gas sample collected on day 20 of studydelta C13 measured in a gas sample collected on day 40 of studydelta C13 used for analyses, corresponds to peak days for leaf and starch corespotential beta glucosidase activitypotential cellobiohydrolase activitypotential alpha-glucosidase activitypotential n-acetyl glucosaminidase activitypotential acid-phosphatase activity
Storage Type:string  
string  
string  
date  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
Measurement Type:nominalnominalnominaldateTimeratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratio
Measurement Values Domain:
Definitionunique identifier for each mesocosm
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code-R+M
Definitionexcluded roots but was large enough for hyphae to enter
Source
Code Definition
Code-R-M
Definitionexcluded roots and mycorrhizal hyphae
Source
Code Definition
Code+R+M
Definitioncontained roots and hyphae
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeC
Definitioncontrol
Source
Code Definition
CodeS
Definitionstarch
Source
Code Definition
CodeL
Definitionleaf material
Source
FormatYYYY-MM-DD
Precision
Unitcentimeter
Typereal
Min
Max59 
UnitcubicCentimeter
Typereal
Min117.75 
Max255.12 
Unitgram
Typereal
Min204.74 
Max559.43 
UnitgramsPerCubicCentimeter
Typereal
Min-0.26 
Max2.28 
Unitdimensionless
Typereal
Min4.11 
Max6.34 
Unitdimensionless
Typereal
Min0.17 
Max0.83 
Unitdimensionless
Typereal
Min9.94 
Max101.48 
UnitgramsPerKilogram
Typereal
Min4.05 
Max84.67 
Unitgram
Typereal
Min1.27 
Max3.6 
Unitgram
Typereal
Min3.13 
Max5.86 
Unitdimensionless
Typereal
Min24.79 
Max106.83 
Unitdimensionless
Typereal
Min49.27 
Max184.44 
Unitmilligram
Typereal
Min
Max2703.4 
UnitmilligramsPerGram
Typereal
Min
Max11.5 
UnitmetersPerGram
Typereal
Min1.84 
Max96.95 
UnitmillimetersPerGram
Typereal
Min0.11 
Max523.3 
UnitmegagramsPerHectare
Typereal
Min
Max21.66 
UnitmilligramsPerKilogram
Typereal
Min
Max259.63 
UnitmilligramsPerKilogram
Typereal
Min67 
Max3546.49 
UnitmicromolesPerMolPerSecond
Typereal
Min2.64 
Max23.04 
UnitmicromolesPerMolPerSecond
Typereal
Min2.62 
Max38.34 
UnitmicromolesPerMolPerSecond
Typereal
Min2.82 
Max27.41 
UnitmicromolesPerMolPerSecond
Typereal
Min3.33 
Max29.89 
UnitmicromolesPerMolPerSecond
Typereal
Min0.91 
Max23.6 
UnitmicromolesPerMolPerSecond
Typereal
Min2.57 
Max12.1 
UnitmicromolesPerMolPerSecond
Typereal
Min0.37 
Max5.66 
UnitmicromolesPerMolPerSecond
Typereal
Min1.23 
Max11.45 
UnitmicromolesPerMolPerSecond
Typereal
Min1.23 
Max23.6 
Unitpermill
Typereal
Min-19.22 
Max130.64 
Unitpermill
Typereal
Min-21.52 
Max3480.18 
Unitpermill
Typereal
Min-21.53 
Max1394.89 
Unitpermill
Typereal
Min-22.17 
Max3635.18 
Unitpermill
Typereal
Min-22 
Max1190.47 
Unitpermill
Typereal
Min-22.32 
Max941.8 
Unitpermill
Typereal
Min-24.16 
Max1360.47 
Unitpermill
Typereal
Min-21.37 
Max232.06 
Unitpermill
Typereal
Min-22 
Max1190.47 
UnitnanomolesPerGramPerHour
Typereal
Min14.54 
Max701.21 
UnitnanomolesPerGramPerHour
Typereal
Min5.05 
Max130.79 
UnitnanomolesPerGramPerHour
Typereal
Min8.68 
Max706.43 
UnitnanomolesPerGramPerHour
Typereal
Min177.37 
Max1986.7 
UnitnanomolesPerGramPerHour
Typereal
Min428 
Max5093.1 
Missing Value Code:                                                                                            
Accuracy Report:                                                                                            
Accuracy Assessment:                                                                                            
Coverage:                                                                                            
Methods:                                                                                            

Data Package Usage Rights

This information is released under the Creative Commons license - Attribution - CC BY (https://creativecommons.org/licenses/by/4.0/). The consumer of these data ("Data User" herein) is required to cite it appropriately in any publication that results from its use. The Data User should realize that these data may be actively used by others for ongoing research and that coordination may be necessary to prevent duplicate publication. The Data User is urged to contact the authors of these data if any questions about methodology or results occur. Where appropriate, the Data User is encouraged to consider collaboration or co-authorship with the authors. The Data User should realize that misinterpretation of data may occur if used out of context of the original study. While substantial efforts are made to ensure the accuracy of data and associated documentation, complete accuracy of data sets cannot be guaranteed. All data are made available "as is." The Data User should be aware, however, that data are updated periodically and it is the responsibility of the Data User to check for new versions of the data. The data authors and the repository where these data were obtained shall not be liable for damages resulting from any use or misinterpretation of the data. Thank you.

Keywords

By Thesaurus:
(No thesaurus)extracellular enzymes, Marcell Experimental Forest, plant-microbe interaction
LTER Controlled Vocabularysoil carbon, soil organic matter, stable isotopes

Methods and Protocols

These methods, instrumentation and/or protocols apply to all data in this dataset:

Methods and protocols used in the collection of this data package
Description:

We manipulated root access to soil microbes by constructing mesocosms made from a 15 cm long, 5 cm diameter PVC pipe. Two 10.5 cm × 8 cm openings were cut along the length of the pipe, one on each side. We covered these openings, as well as the bottom of the pipe, with stainless steel mesh attached with rivets and nutrient-free glue (Household Goop, Eclectic Products, Eugene, USA). We covered 135 mesocosms with one of three mesh sizes: 1.45 mm (n = 45), 38 microm (n = 45), or 5 micro m (n = 45). We intended to exclude roots from fine-mesh mesocosms and allow root access to soil with large-mesh mesocosms (Johnson, Leake, and Read, 2001; Langley, Chapman, and Hungate, 2006; Phillips et al., 2012). However, our previous work showed the mesh design does not generate absolute root exclusion in all forest types (Moore et al., 2015). Mesocosms in this study varied in root density, thus we analyzed our data across a gradient of root density.

On May 12, 2014, we installed mesocosms randomly throughout the study site. We removed any organic horizon material and excavated the top 15 cm of mineral soil using a 5 × 15 cm hammer corer (AMS, Inc., American Falls, USA). The top 15 cm included only the A horizon. We removed visible roots to avoid a litter fertilization effect, and then filled each mesocosm with this root-free native soil. We placed each mesocosm in the hole from which it was collected and ensured the mesh was completely below the soil surface. Mesocosms were placed at least 0.5 m away from each other.

In-situ 13C-starch and 13C-leaf material incubation

Adding stable isotopes to soil enabled us to track microbial activity within specific C pools. We applied a 99 atom-% 13C labeled algal starch (Cambridge Isotope Laboratories, Tewksbury, MA, USA) and a greater than 97 atom-% 13C labeled ground tulip-poplar (Liriodendron tulipiferae) leaf material (IsoLife, Wageningen, Netherlands). We suspended 5 mg of powdered starch (0.58 mg C) or ground leaf material (2.3 mg C) in 30 mL of deionized water and injected into mesocosms that contained approximately 350 g soil. The amount of C added to soil from starch (1.6 microg C g-1) or leaf material (6.6 microg C g-1) was large enough to have a traceable label but small enough to not fertilize the soil, which contained on average 20 mg C g-1 soil at our site and is a similar amount to other C tracer field studies (Zak and Kling, 2006). The injections were conducted on June 24, 2014, six weeks after installing the mesocosms. We injected the starch suspension into 45 mesocosms (15 of each mesh size) and the leaf solution into 45 mesocosms (15 of each mesh size). To control for moisture addition and disturbance, we injected deionized water into 21 starch-control mesocosms (7 of each mesh size) collected on the same day as starch-addition mesocosms, and into 24 leaf-control mesocosms (8 of each mesh size) collected on the same day as leaf-addition mesocosms. Mesocosms injected with the starch suspension were sampled for 13CO2 on days 1, 2, 3, 4 and 5 after injection, and those with the leaf suspension were sampled on days 2, 4, 6, 10, and 20 after injection. We sampled gasses across several days because we were unsure which day CO2 flux would peak and this timeframe ensured we would capture peak microbial respiration of the 13C-labeled substrate (Zak and Kling, 2006). To collect gas samples for 13CO2 analysis, we capped the cores with a tightly fitting 5 cm diameter PVC cap fitted with a rubber septum. After 20 min, we used a syringe to draw a 15 mL sample of gas from the cap and injected the sample into a 12 mL Exetainer vacuum vial (Labco Limited, Lampeter, UK). One gas sample per sampling day was taken from the cores. At the beginning and end of each sampling day two ambient samples were taken to establish background levels of 13CO2. All 13CO2 samples were analyzed at the UC Davis Stable Isotope Facility (Davis, USA) using a ThermoScientific PreCon-GasBench system interfaced to a ThermoScientific Delta V Plus isotope ratio mass spectrometer (ThermoScientific, Bremen, USA). We removed all starch and starch-control mesocosms on June 29, 2014 and all leaf and leaf-control mesocosms on August 4, 2014. We placed the contents of mesocosms in a plastic bag, transported them in a cooler on ice, and stored at 4degC until they were analyzed.

To quantify root density, we removed unsieved soil from the mesocosms and visually inspected soils for roots. We used forceps to collect fine (less than 2 mm) roots and placed field-moist root mass into a clear-bottomed reservoir filled with water to a depth of approximately 2 cm. We scanned the roots in the reservoir on a photo scanner at 300 dpi resolution. We cropped the images to remove the border created by the reservoir, and then calculated root length using the Morphology plug-in and IJ Rhizo script for ImageJ software (Lobet and Draye, 2013). Root density is equal to root length per volume soil.

We analyzed microbial biomass C (MBC) within 48 hours of soil collection using the chloroform fumigation-extraction method (Vance, Brooks, and Jenkinson, 1987), allowing fumigated samples to incubate at room temperature for 5 days. All samples were stored at 4degC until analysis. We measured C of the samples on a total organic carbon analyzer (TOC-V CPH Total Organic Carbon Analyzer, Shimadzu Scientific Instruments, Columbia, USA). Microbial biomass C was calculated using a correction factor of 0.38 (Voroney, Brooks, and Beyaert, 2007).

We analyzed the potential enzyme activity of our soils using methods described by Bell et al. (2013) within 48 h of collection. Briefly, we mixed 2.75 g of field moist soil (sieved to 2 mm) with 91 mL of 50 mM sodium acetate buffer at pH 5 using an immersion blender. We pipetted 800 microL of soil slurry into a column on a deep (2 mL) 96-well plate that contained 0 -100 microM of methylumbelliferyl (MUB) to establish a standardized MUB reaction for each soil sample. We then pipetted 800 microL of the soil slurry into a separate plate and added 200 microL of 4-MUB-beta-D-glucoside (beta-gluc), 4-MUB-cellobioside (CBH), 4-MUB-N-acetyl-beta-D-glucosaminide (NAG), or 4-MUB-phosphate (PHOS) to each soil sample. beta-gluc and CBH are hydrolytic enzymes that work in concert to break down cellulose into glucose, and NAG and PHOS are used by microbes to acquire nitrogen and phosphorus, respectively. We sealed each plate with a plate mat, agitated vigorously by hand, then incubated the MUB standard and sample plates in the dark at room temperature for 3 h. Using a fluorometer/spectrophotometer (Synergy HT, Biotek Inc, Winooski, USA) we measured fluorescence at an excitation wavelength of 365 nm and an emission wavelength of 450 nm.

People and Organizations

Creators:
Individual: Jessica A.      M. Moore
Organization:University of Tennessee
Email Address:
Jbryan44@utk.edu
Id:https://orcid.org/0000-0002-5387-0662
Individual: Benjamin N. Sulman
Organization:Oak Ridge National Laboratory
Email Address:
sulmanbn@ornl.gov
Individual: Melanie A. Mayes
Organization:Oak Ridge National Laboratory
Email Address:
mayesma@ornl.gov
Individual: Courtney M. Patterson
Organization:University of Tennessee
Email Address:
Cpatte11@utk.edu
Individual: Aimee T. Classen
Organization:University of Vermont
Email Address:
Aimee.classen@uvm.edu
Contacts:
Individual: Jessica A.      M. Moore
Organization:University of Tennessee
Email Address:
Jbryan44@utk.edu
Id:https://orcid.org/0000-0002-5387-0662

Temporal, Geographic and Taxonomic Coverage

Temporal, Geographic and/or Taxonomic information that applies to all data in this dataset:

Time Period
Begin:
2014-04-01
End:
2014-11-30
Sampling Site: 
Description:Marcell Experimental Forest, Minnesota, USA.
Site Coordinates:
Longitude (degree): -93.45444Latitude (degree): 47.5075
Taxonomic Range:
Classification:
Rank Name:kingdom
Rank Value:Plantae
Classification:
Rank Name:subkingdom
Rank Value:Viridiplantae
Classification:
Rank Name:infrakingdom
Rank Value:Streptophyta
Classification:
Rank Name:superdivision
Rank Value:Embryophyta
Classification:
Rank Name:division
Rank Value:Tracheophyta
Classification:
Rank Name:subdivision
Rank Value:Spermatophytina
Classification:
Rank Name:class
Rank Value:Magnoliopsida
Classification:
Rank Name:superorder
Rank Value:Rosanae
Classification:
Rank Name:order
Rank Value:Malpighiales
Classification:
Rank Name:family
Rank Value:Salicaceae
Classification:
Rank Name:genus
Rank Value:Populus
Classification:
Rank Name:species
Rank Value:Populus grandidentata
Classification:
Rank Name:kingdom
Rank Value:Plantae
Classification:
Rank Name:subkingdom
Rank Value:Viridiplantae
Classification:
Rank Name:infrakingdom
Rank Value:Streptophyta
Classification:
Rank Name:superdivision
Rank Value:Embryophyta
Classification:
Rank Name:division
Rank Value:Tracheophyta
Classification:
Rank Name:subdivision
Rank Value:Spermatophytina
Classification:
Rank Name:class
Rank Value:Magnoliopsida
Classification:
Rank Name:superorder
Rank Value:Rosanae
Classification:
Rank Name:order
Rank Value:Malpighiales
Classification:
Rank Name:family
Rank Value:Salicaceae
Classification:
Rank Name:genus
Rank Value:Populus
Classification:
Rank Name:species
Rank Value:Populus tremuloides
Classification:
Rank Name:kingdom
Rank Value:Plantae
Classification:
Rank Name:subkingdom
Rank Value:Viridiplantae
Classification:
Rank Name:infrakingdom
Rank Value:Streptophyta
Classification:
Rank Name:superdivision
Rank Value:Embryophyta
Classification:
Rank Name:division
Rank Value:Tracheophyta
Classification:
Rank Name:subdivision
Rank Value:Spermatophytina
Classification:
Rank Name:class
Rank Value:Magnoliopsida
Classification:
Rank Name:superorder
Rank Value:Rosanae
Classification:
Rank Name:order
Rank Value:Fagales
Classification:
Rank Name:family
Rank Value:Betulaceae
Classification:
Rank Name:genus
Rank Value:Betula
Classification:
Rank Name:species
Rank Value:Betula papyrifera
Classification:
Rank Name:kingdom
Rank Value:Plantae
Classification:
Rank Name:subkingdom
Rank Value:Viridiplantae
Classification:
Rank Name:infrakingdom
Rank Value:Streptophyta
Classification:
Rank Name:superdivision
Rank Value:Embryophyta
Classification:
Rank Name:division
Rank Value:Tracheophyta
Classification:
Rank Name:subdivision
Rank Value:Polypodiophytina
Classification:
Rank Name:class
Rank Value:Polypodiopsida
Classification:
Rank Name:subclass
Rank Value:Polypodiidae
Classification:
Rank Name:order
Rank Value:Polypodiales
Classification:
Rank Name:family
Rank Value:Dennstaedtiaceae
Classification:
Rank Name:genus
Rank Value:Pteridium
Classification:
Rank Name:species
Rank Value:Pteridium aquilinum
Classification:
Rank Name:kingdom
Rank Value:Plantae
Classification:
Rank Name:subkingdom
Rank Value:Viridiplantae
Classification:
Rank Name:infrakingdom
Rank Value:Streptophyta
Classification:
Rank Name:superdivision
Rank Value:Embryophyta
Classification:
Rank Name:division
Rank Value:Tracheophyta
Classification:
Rank Name:subdivision
Rank Value:Spermatophytina
Classification:
Rank Name:class
Rank Value:Magnoliopsida
Classification:
Rank Name:superorder
Rank Value:Rosanae
Classification:
Rank Name:order
Rank Value:Rosales
Classification:
Rank Name:family
Rank Value:Rosaceae
Classification:
Rank Name:genus
Rank Value:Rubus
Classification:
Rank Name:species
Rank Value:Rubus pubescens
Classification:
Rank Name:kingdom
Rank Value:Plantae
Classification:
Rank Name:subkingdom
Rank Value:Viridiplantae
Classification:
Rank Name:infrakingdom
Rank Value:Streptophyta
Classification:
Rank Name:superdivision
Rank Value:Embryophyta
Classification:
Rank Name:division
Rank Value:Tracheophyta
Classification:
Rank Name:subdivision
Rank Value:Spermatophytina
Classification:
Rank Name:class
Rank Value:Magnoliopsida
Classification:
Rank Name:superorder
Rank Value:Asteranae
Classification:
Rank Name:order
Rank Value:Cornales
Classification:
Rank Name:family
Rank Value:Cornaceae
Classification:
Rank Name:genus
Rank Value:Cornus
Classification:
Rank Name:species
Rank Value:Cornus rugosa
Classification:
Rank Name:kingdom
Rank Value:Plantae
Classification:
Rank Name:subkingdom
Rank Value:Viridiplantae
Classification:
Rank Name:infrakingdom
Rank Value:Streptophyta
Classification:
Rank Name:superdivision
Rank Value:Embryophyta
Classification:
Rank Name:division
Rank Value:Tracheophyta
Classification:
Rank Name:subdivision
Rank Value:Spermatophytina
Classification:
Rank Name:class
Rank Value:Magnoliopsida
Classification:
Rank Name:superorder
Rank Value:Rosanae
Classification:
Rank Name:order
Rank Value:Fagales
Classification:
Rank Name:family
Rank Value:Betulaceae
Classification:
Rank Name:genus
Rank Value:Corylus
Classification:
Rank Name:species
Rank Value:Corylus cornuta

Project

Parent Project Information:

Title:US Dept. of Energy
Personnel:
Individual: Aimee T Classen
Role:Principal Investigator
Funding: US Dept. of Energy: DE-SC0010562
Related Project:
Title:NOAA – US Dept of Commerce
Personnel:
Individual: Benjamin N Sulman
Role:Principal Investigator
Funding: NOAA – US Dept of Commerce: NA14OAR4320106

Maintenance

Maintenance:
Description:completed
Frequency:
Other Metadata

Additional Metadata

additionalMetadata
        |___text '\n    '
        |___element 'metadata'
        |     |___text '\n      '
        |     |___element 'unitList'
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'cubicCentimeter'
        |     |     |     |  \___attribute 'multiplierToSI' = ''
        |     |     |     |  \___attribute 'name' = 'cubicCentimeter'
        |     |     |     |  \___attribute 'parentSI' = ''
        |     |     |     |  \___attribute 'unitType' = 'volume'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'gramsPerKilogram'
        |     |     |     |  \___attribute 'multiplierToSI' = ''
        |     |     |     |  \___attribute 'name' = 'gramsPerKilogram'
        |     |     |     |  \___attribute 'parentSI' = ''
        |     |     |     |  \___attribute 'unitType' = 'massPerMass'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'milligramsPerGram'
        |     |     |     |  \___attribute 'multiplierToSI' = ''
        |     |     |     |  \___attribute 'name' = 'milligramsPerGram'
        |     |     |     |  \___attribute 'parentSI' = ''
        |     |     |     |  \___attribute 'unitType' = 'massPerMass'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'metersPerGram'
        |     |     |     |  \___attribute 'multiplierToSI' = ''
        |     |     |     |  \___attribute 'name' = 'metersPerGram'
        |     |     |     |  \___attribute 'parentSI' = ''
        |     |     |     |  \___attribute 'unitType' = 'massPerMass'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'millimetersPerGram'
        |     |     |     |  \___attribute 'multiplierToSI' = ''
        |     |     |     |  \___attribute 'name' = 'millimetersPerGram'
        |     |     |     |  \___attribute 'parentSI' = ''
        |     |     |     |  \___attribute 'unitType' = 'massPerMass'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'megagramsPerHectare'
        |     |     |     |  \___attribute 'multiplierToSI' = ''
        |     |     |     |  \___attribute 'name' = 'megagramsPerHectare'
        |     |     |     |  \___attribute 'parentSI' = ''
        |     |     |     |  \___attribute 'unitType' = 'massPerArea'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'milligramsPerKilogram'
        |     |     |     |  \___attribute 'multiplierToSI' = ''
        |     |     |     |  \___attribute 'name' = 'milligramsPerKilogram'
        |     |     |     |  \___attribute 'parentSI' = ''
        |     |     |     |  \___attribute 'unitType' = 'massPerMass'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'micromolesPerMolPerSecond'
        |     |     |     |  \___attribute 'multiplierToSI' = ''
        |     |     |     |  \___attribute 'name' = 'micromolesPerMolPerSecond'
        |     |     |     |  \___attribute 'parentSI' = ''
        |     |     |     |  \___attribute 'unitType' = 'flux'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'permill'
        |     |     |     |  \___attribute 'multiplierToSI' = ''
        |     |     |     |  \___attribute 'name' = 'permill'
        |     |     |     |  \___attribute 'parentSI' = ''
        |     |     |     |  \___attribute 'unitType' = 'concentration'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'nanomolesPerGramPerHour'
        |     |     |     |  \___attribute 'multiplierToSI' = ''
        |     |     |     |  \___attribute 'name' = 'nanomolesPerGramPerHour'
        |     |     |     |  \___attribute 'parentSI' = ''
        |     |     |     |  \___attribute 'unitType' = 'flux'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n      '
        |     |___text '\n    '
        |___text '\n  '

EDI is a collaboration between the University of New Mexico and the University of Wisconsin – Madison, Center for Limnology:

UNM logo UW-M logo