Data Package Metadata   View Summary

Lake chloride concentrations and model predictions for 49,432 lakes in the Midwest and Northeast United States.

General Information
Data Package:
Local Identifier:edi.452.2
Title:Lake chloride concentrations and model predictions for 49,432 lakes in the Midwest and Northeast United States.
Alternate Identifier:DOI PLACE HOLDER
Abstract:

Lakes in the Midwest and Northeast United States are at risk of anthropogenic chloride contamination, but we have little knowledge of the prevalence and spatial distribution of the problem. The majority of salt pollution in north temperate regions stems from road salt application but other chloride sources include water softeners, synthetic fertilizers, and livestock excretion. Although chloride contamination of lakes is well documented, it is unknown how many lakes are at risk of long-term salinization. We used a quantile regression forest to leverage information from 2,773 lakes to predict the chloride concentration of all 49,432 lakes greater than 4 ha in a 17-state area. The QRF used 22 predictor variables, which included lake morphometry characteristics, watershed land use, and distance to the nearest interstate and road. Model predictions had an r2 of 0.94 for all chloride observations, and 0.87 for predictions of the mean chloride concentration observed at each lake.

Publication Date:2020-04-24

Time Period
Begin:
1990-01-01
End:
2018-12-13

People and Organizations
Contact:Dugan, Hilary A (University of Wisconsin-Madison) [  email ]
Creator:Dugan, Hilary A (University of Wisconsin-Madison)
Creator:Skaff, Nicholas K (University of California, Berkeley University)
Creator:Doubek, Jonathan P (Lake Superior State University)
Creator:Burke, Samantha M (University of Guelph)
Creator:Krivak-Tetley, Flora E (Dartmouth College)
Creator:Summers, Jamie C 

Data Entities
Data Table Name:
lakeCL_predictions.csv
Description:
chloride prediction model output
Data Table Name:
lakeCL_trainingData.csv
Description:
chloride prediction model training data
Data Table Name:
WisconsinLakes_Chloride.csv
Description:
Chloride concentrations from a suite of Wisconsin Lakes in summer 2018
Other Name:
QRF_script.R
Description:
R code which builds a quantile regression forest model using observational chloride data and predictor variables found in lakeCL_trainingData.csv
Detailed Metadata

Data Entities


Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/452/2/282e3d41aef63c11c386cf65eed1b26d
Name:lakeCL_predictions.csv
Description:chloride prediction model output
Number of Records:49432
Number of Columns:32

Table Structure
Object Name:lakeCL_predictions.csv
Size:10153548 bytes
Authentication:9b23d7e8d75efbdc4bd28007b06e445d Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 
Column Name:lagoslakeid  
nhdid  
gnis_name  
nhd_lat  
nhd_long  
LakeArea  
WS_Area  
MaxDepth  
lakeconnection  
WS_OpenWater  
WS_Dev_Open  
WS_Dev_Low  
WS_Dev_Med  
WS_Dev_High  
WS_Barren  
WS_DeciduousForest  
WS_EvergreenForest  
WS_MixedForest  
WS_Schrub  
WS_Grassland  
WS_PastureHay  
WS_Crops  
WS_WoodyWetlands  
WS_EmergentWetlands  
WS_RoadDensity  
InterstateDistance  
RoadDistance  
WinterSeverity  
state_name  
pred_05  
pred_50  
pred_95  
Definition:Unique lake identifier developed for LAGOS-NEUnique lake identifier from National Hydrography datasetLake NameLatitudeLongitudeSurface area of the lakeSurface area of the watershedMaximum depth of lakeConnectivity of focal lake to upstream features (DR_LakeStream = drainage lake with an upstream lake, DR_Stream = drainage lake with upstream stream, Headwater = lake with outlet but no inlet, Isolated = lake with no inlets or outlets)% landuse classified as open water in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as open space, developed in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as developed, low intensity in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as developed, medium intensity in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as developed, high intensity in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as barren/transitional in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as deciduous forest in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as evergreen forest in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as mixed forest in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as schrubland in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as grassland in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as pasture/hay in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as row crops in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as woody wetlands in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as herbaceous wetlands in the watershed. Derived from the National Land Cover Dataset (NLCD).Road density in the watershed. Derived from the National Land Cover Dataset (NLCD).Distance to the nearest interstateDistance to the nearest roadWinter severity index obtained from ClearRoads (national research consortium, clearroads.org). Calculated from 2000 to 2010 as 0.50 × (average annual snowfall in inches) + 0.05 × (annual duration of snowfall in hours) + 0.05 × (annual duration of blowing snow in hours) + 0.10 × (annual duration of freezing rain in hours).Name of US state that lake is located in (or partially in)Prediction interval: 0.05 quantileMedian predictionPrediction interval: 0.95 quantile
Storage Type:string  
string  
string  
float  
float  
float  
float  
float  
string  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
string  
float  
float  
float  
Measurement Type:nominalnominalnominalratioratioratioratiorationominalratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratiorationominalratioratioratio
Measurement Values Domain:
DefinitionUnique lake identifier developed for LAGOS-NE
DefinitionUnique lake identifier from National Hydrography dataset
DefinitionLake Name
Unitdegree
Typereal
Min35.998945 
Max48.98999 
Unitdegree
Typereal
Min-97.216823 
Max-67.091051 
Unithectare
Typereal
Min
Max66650.33 
Unithectare
Typereal
Min0.1 
Max3204167.25 
Unitmeter
Typereal
Min0.1 
Max198.4 
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeDR_LakeStream
Definitiondrainage lake with an upstream lake
Source
Code Definition
CodeHeadwater
Definitionlake with outlet but no inlet
Source
Code Definition
CodeDR_Stream
Definitiondrainage lake with upstream stream
Source
Code Definition
CodeIsolated
Definitionlake with no inlets or outlets
Source
Unitdimensionless
Typereal
Min
Max100 
Unitdimensionless
Typereal
Min
Max100 
Unitdimensionless
Typereal
Min
Max100 
Unitdimensionless
Typereal
Min
Max100 
Unitdimensionless
Typereal
Min
Max83.51 
Unitdimensionless
Typereal
Min
Max100 
Unitdimensionless
Typereal
Min
Max100 
Unitdimensionless
Typereal
Min
Max98.84 
Unitdimensionless
Typereal
Min
Max86.15 
Unitdimensionless
Typereal
Min
Max97.63 
Unitdimensionless
Typereal
Min
Max100 
Unitdimensionless
Typereal
Min
Max100 
Unitdimensionless
Typereal
Min
Max100 
Unitdimensionless
Typereal
Min
Max100 
Unitdimensionless
Typereal
Min
Max100 
UnitmetersPerHectare
Typereal
Min
Max5631.9 
Unitmeter
Typereal
Min0.01 
Max311.21 
Unitmeter
Typereal
Min
Max114.41 
Unitdimensionless
Typereal
Min4.97 
Max185.17 
DefinitionName of US state that lake is located in (or partially in)
UnitmilligramsPerLiter
Typereal
Min0.071 
Max955.001 
UnitmilligramsPerLiter
Typereal
Min0.081 
Max2778.001 
UnitmilligramsPerLiter
Typereal
Min0.262321230738575 
Max2979.001 
Missing Value Code:      
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
 
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
Accuracy Report:                                                                
Accuracy Assessment:                                                                
Coverage:                                                                
Methods:                                                                

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/452/2/c485df5d24d63fe422c2f1949872ff51
Name:lakeCL_trainingData.csv
Description:chloride prediction model training data
Number of Records:29010
Number of Columns:31

Table Structure
Object Name:lakeCL_trainingData.csv
Size:6477664 bytes
Authentication:d9bc49d4207530cfbbcbc26115e3b509 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 
Column Name:lagoslakeid  
nhdid  
gnis_name  
ActivityStartDate  
Chloride  
nhd_lat  
nhd_long  
MaxDepth  
state_name  
Month  
LakeArea  
WS_Area  
WinterSeverity  
WS_OpenWater  
WS_Dev_Open  
WS_Dev_Low  
WS_Dev_Med  
WS_Dev_High  
WS_Barren  
WS_DeciduousForest  
WS_EvergreenForest  
WS_MixedForest  
WS_Schrub  
WS_Grassland  
WS_PastureHay  
WS_Crops  
WS_WoodyWetlands  
WS_EmergentWetlands  
WS_RoadDensity  
InterstateDistance  
RoadDistance  
Definition:Unique lake identifier developed for LAGOS-NEUnique lake identifier from National Hydrography datasetLake NameDate of samplingChloride concentrationLatitudeLongitudeMaximum depth of lakeName of US state that lake is located in (or partially in)Month of samplingSurface area of the lakeSurface area of the watershedWinter severity index obtained from ClearRoads (national research consortium, clearroads.org). Calculated from 2000 to 2010 as 0.50 × (average annual snowfall in inches) + 0.05 × (annual duration of snowfall in hours) + 0.05 × (annual duration of blowing snow in hours) + 0.10 × (annual duration of freezing rain in hours).% landuse classified as open water in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as open space, developed in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as developed, low intensity in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as developed, medium intensity in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as developed, high intensity in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as barren/transitional in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as deciduous forest in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as evergreen forest in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as mixed forest in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as schrubland in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as grassland in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as pasture/hay in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as row crops in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as woody wetlands in the watershed. Derived from the National Land Cover Dataset (NLCD).% landuse classified as herbaceous wetlands in the watershed. Derived from the National Land Cover Dataset (NLCD).Road density in the watershed. Derived from the National Land Cover Dataset (NLCD).Distance to the nearest interstateDistance to the nearest road
Storage Type:string  
string  
string  
date  
float  
float  
float  
float  
string  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
Measurement Type:nominalnominalnominaldateTimeratioratioratiorationominalratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratioratio
Measurement Values Domain:
DefinitionUnique lake identifier developed for LAGOS-NE
DefinitionUnique lake identifier from National Hydrography dataset
DefinitionLake Name
FormatYYYY-MM-DD
Precision
UnitmilligramsPerLiter
Typereal
Min0.05 
Max2979 
Unitdegree
Typereal
Min36.56094 
Max48.720568 
Unitdegree
Typereal
Min-96.732596 
Max-68.193229 
Unitmeter
Typereal
Min0.9144 
Max198.4 
DefinitionName of US state that lake is located in (or partially in)
UnitnominalMonth
Typenatural
Min
Max12 
Unithectare
Typereal
Min4.01024496 
Max66650.33233 
Unithectare
Typereal
Min0.538460682 
Max1482384.634 
Unitdimensionless
Typereal
Min7.6015625 
Max168.0865625 
Unitdimensionless
Typereal
Min
Max96.97 
Unitdimensionless
Typereal
Min
Max87.53 
Unitdimensionless
Typereal
Min
Max65.58 
Unitdimensionless
Typereal
Min
Max53.75 
Unitdimensionless
Typereal
Min
Max56.92 
Unitdimensionless
Typereal
Min
Max29.76 
Unitdimensionless
Typereal
Min
Max97.79 
Unitdimensionless
Typereal
Min
Max80.6 
Unitdimensionless
Typereal
Min
Max73.55 
Unitdimensionless
Typereal
Min
Max54.62 
Unitdimensionless
Typereal
Min
Max54.98 
Unitdimensionless
Typereal
Min
Max68.65 
Unitdimensionless
Typereal
Min
Max95.04 
Unitdimensionless
Typereal
Min
Max74.5 
Unitdimensionless
Typereal
Min
Max54.63 
UnitmetersPerHectare
Typereal
Min
Max216.7235 
Unitmeter
Typereal
Min0.0121248275743821 
Max307.264679466468 
Unitmeter
Typereal
Min0.0120108118367678 
Max41.7947589266611 
Missing Value Code:      
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
Accuracy Report:                                                              
Accuracy Assessment:                                                              
Coverage:                                                              
Methods:                                                              

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/452/2/1a2e9e51eb15d6ac0b5e5447e526739a
Name:WisconsinLakes_Chloride.csv
Description:Chloride concentrations from a suite of Wisconsin Lakes in summer 2018
Number of Records:27
Number of Columns:8

Table Structure
Object Name:WisconsinLakes_Chloride.csv
Size:1926 bytes
Authentication:ad449414a633fcf133ab840f48952445 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 
Column Name:lagoslakeid  
nhdid  
GNIS_Name  
LakeName  
Date  
Chloride_mgL  
lon  
lat  
Definition:Unique lake identifier developed for LAGOS-NEUnique lake identifier from National Hydrography datasetOfficial NHD Lake NameLake NameSampling dateChloride concentrationLongitudeLatitude
Storage Type:string  
string  
string  
string  
date  
float  
float  
float  
Measurement Type:nominalnominalnominalnominaldateTimeratioratioratio
Measurement Values Domain:
DefinitionUnique lake identifier developed for LAGOS-NE
DefinitionUnique lake identifier from National Hydrography dataset
DefinitionOfficial NHD Lake Name
DefinitionLake Name
FormatYYYY-MM-DD
Precision
UnitmilligramsPerLiter
Typereal
Min3.29 
Max180.2 
Unitdegree
Typereal
Min-90.0314 
Max-88.3568 
Unitdegree
Typereal
Min42.5417 
Max46.0239 
Missing Value Code:          
CodeNA
Explnot available
CodeNA
Explnot available
CodeNA
Explnot available
Accuracy Report:                
Accuracy Assessment:                
Coverage:                
Methods:                

Non-Categorized Data Resource

Name:QRF_script.R
Entity Type:unknown
Description:R code which builds a quantile regression forest model using observational chloride data and predictor variables found in lakeCL_trainingData.csv
Physical Structure Description:
Object Name:QRF_script.R
Size:4030 bytes
Authentication:8db012a0c324c2973b746185320c06e6 Calculated By MD5
Externally Defined Format:
Format Name:unknown
Data:https://pasta-s.lternet.edu/package/data/eml/edi/452/2/2da0f3fc683707f99bda2fc5f642d75d

Data Package Usage Rights

This information is released under the Creative Commons license - Attribution - CC BY (https://creativecommons.org/licenses/by/4.0/). The consumer of these data ("Data User" herein) is required to cite it appropriately in any publication that results from its use. The Data User should realize that these data may be actively used by others for ongoing research and that coordination may be necessary to prevent duplicate publication. The Data User is urged to contact the authors of these data if any questions about methodology or results occur. Where appropriate, the Data User is encouraged to consider collaboration or co-authorship with the authors. The Data User should realize that misinterpretation of data may occur if used out of context of the original study. While substantial efforts are made to ensure the accuracy of data and associated documentation, complete accuracy of data sets cannot be guaranteed. All data are made available "as is." The Data User should be aware, however, that data are updated periodically and it is the responsibility of the Data User to check for new versions of the data. The data authors and the repository where these data were obtained shall not be liable for damages resulting from any use or misinterpretation of the data. Thank you.

Keywords

By Thesaurus:
(No thesaurus)Chloride, reservoirs, LAGOS, road salt, salt, impervious surface, salinization
LTER Controlled Vocabularylakes, limnology

Methods and Protocols

These methods, instrumentation and/or protocols apply to all data in this dataset:

Methods and protocols used in the collection of this data package
Description:

We leveraged publicly available land use, lake catchment and morphometry, and climate data across a 17-state area of the Midwest and Northeast United States, to predict chloride concentrations in 49,432 lakes. Our general methodology included: 1) Acquiring and geoprocessing lake water quality data and site characteristics. 2) Harmonizing training datasets. 3) Building a machine learning model for chloride prediction. Calculating model fit. 4) Building a prediction dataset for 49,432 lakes.

Training Dataset

Observational chloride measurements from lakes, reservoirs, and impoundments were downloaded from the US water quality portal (WQP). All results were converted to mg L-1, and only data with ResultStatusIdentifier as Accepted or Final noted in the dataset were retained. The initial search of 115,389 observations was then filtered to data collected after 1990, chloride concentrations < 10,000 mg L-1, and water samples less than 10 m deep or with depth not listed (where the assumption was an epilimnion measurement). These quality control steps were taken to limit inclusion of historical data that may not represent current conditions, remove naturally saline waterbodies (n =5, adjacent/connected to the Atlantic Ocean), and remove potentially meromictic lakes (n=0). Multiple observations collected on the same day were averaged. Lakes with missing watershed information were removed, resulting in 29,675 unique daily observations from 2,773 lakes. Three states (Illinois, Iowa, and Rhode Island) had no chloride data, and three states (Pennsylvania, Connecticut, and New Hampshire) had chloride data from only one lake. 2,773 lakes represent 5% of the region’s lakes.

WQP site identification numbers (IDs) from the dataset were linked to the high-resolution National Hydrography Dataset (NHD) that accessed bounding box information of each NHD shapefile and ran a spatial join. The resulting relational table linked each chloride observation to an individual lake through an NHD ID. For every NHD lake ID, geospatial lake data were obtained from the LAGOS-NE database (Soranno et al. 2017), which provides watershed ecological context for all lakes greater than 4 ha in the 17-state area. Additional site characteristics were extracted from GIS line files of US interstates, US primary roads, and gridded winter severity data. Across all predictor variables in the training dataset, minimum values were >= 0.01. After converting zero values to 0.001, all data were log-transformed.

Machine Learning Model

A quantile regression forest (QRF) was used to model the relationship between observed chloride concentrations and lake and watershed characteristics. This model was chosen to accommodate a large number of correlated predictor variables, the presence of non-linear responses, and the potential importance of interactions among predictor variables. The QRF was implemented with 1,000 trees using the ranger package in R, with mtry set to 4 (Wright and Ziegler 2017).

To avoid overfitting the QRF to lakes with a greater number of chloride observations, we developed a customized sampling routine that constructed individual trees using the observations from a random subset of the study lakes (95% subset: the in-bag samples). Each resulting tree was used to make out-of-bag predictions on the remaining observations from the 5% of excluded lakes. All predictions are reported as the median of the terminal node values from each tree, with the corresponding 90%-prediction interval calculated from the .05 and 0.95 quantiles of the estimated conditional distribution of the response variable (Meinshausen 2006). Median terminal node values were chosen over mean values because they had superior predictive performance on out-of-bag observations.

Prediction Dataset

A prediction dataset was constructed for the full LAGOS-NE dataset, which contained 51,102 lakes and reservoirs greater than 4 ha in the 17-state area. After removing lakes with no available land-use data because the watersheds crossed the US/Canada border, 49,432 lakes remained, of which 2,773 were used for training the model. The prediction dataset was identical in structure to the training dataset, but contained no observational chloride data.

Wisconsin Lake Chloride Observations

Independent measurements were taken from Wisconsin Lakes in the summer of 2018. Samples were taken from the surface of each lake, and analyzed for chloride (and sulfate) simultaneously by Ion Chromatography, using a hydroxide eluent. The detection limit for chloride is approximately 0.01 ppm. Chloride is determined by a Dionex model ICS 2100 using an electro-chemical suppressor.

References

Meinshausen, N. 2006. Quantile Regression Forests. Journal of Machine Learning Research 7:983–999.

Soranno, P. A., L. C. Bacon, M. Beauchene, K. E. Bednar, E. G. Bissell, C. K. Boudreau, M. G. Boyer, M. T. Bremigan, S. R. Carpenter, J. W. Carr, K. S. Cheruvelil, S. T. Christel, M. Claucherty, S. M. Collins, J. D. Conroy, J. A. Downing, J. Dukett, C. E. Fergus, C. T. Filstrup, C. Funk, M. J. Gonzalez, L. T. Green, C. Gries, J. D. Halfman, S. K. Hamilton, P. C. Hanson, E. N. Henry, E. M. Herron, C. Hockings, J. R. Jackson, K. Jacobson-Hedin, L. L. Janus, W. W. Jones, J. R. Jones, C. M. Keson, K. B. S. King, S. A. Kishbaugh, J.-F. Lapierre, B. Lathrop, J. A. Latimore, Y. Lee, N. R. Lottig, J. A. Lynch, L. J. Matthews, W. H. McDowell, K. E. B. Moore, B. P. Neff, S. J. Nelson, S. K. Oliver, M. L. Pace, D. C. Pierson, A. C. Poisson, A. I. Pollard, D. M. Post, P. O. Reyes, D. O. Rosenberry, K. M. Roy, L. G. Rudstam, O. Sarnelle, N. J. Schuldt, C. E. Scott, N. K. Skaff, N. J. Smith, N. R. Spinelli, J. J. Stachelek, E. H. Stanley, J. L. Stoddard, S. B. Stopyak, C. A. Stow, J. M. Tallant, P.-N. Tan, A. P. Thorpe, M. J. Vanni, T. Wagner, G. Watkins, K. C. Weathers, K. E. Webster, J. D. White, M. K. Wilmes, and S. Yuan. 2017. LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes. GigaScience 6:1–22.

Wright, M. N., and A. Ziegler. 2017. ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. Journal of Statistical Software:1–17.

People and Organizations

Creators:
Individual: Hilary A Dugan
Organization:University of Wisconsin-Madison
Email Address:
hdugan@wisc.edu
Id:https://orcid.org/0000-0003-4674-1149
Individual: Nicholas K Skaff
Organization:University of California, Berkeley University
Email Address:
nskaff@berkeley.edu
Id:https://orcid.org/0000-0002-5929-3966
Individual: Jonathan P Doubek
Organization:Lake Superior State University
Email Address:
jdoubek@lssu.edu
Id:https://orcid.org/0000-0003-2651-4715
Individual: Samantha M Burke
Organization:University of Guelph
Email Address:
samantha.burke2@gmail.com
Individual: Flora E Krivak-Tetley
Organization:Dartmouth College
Email Address:
fkt.gr@dartmouth.edu
Id:https://orcid.org/0000-0003-3521-2460
Individual: Jamie C Summers
Email Address:
jamiecsummers@gmail.com
Id:https://orcid.org/0000-0002-7497-2326
Contacts:
Individual: Hilary A Dugan
Organization:University of Wisconsin-Madison
Email Address:
hdugan@wisc.edu
Id:https://orcid.org/0000-0003-4674-1149

Temporal, Geographic and Taxonomic Coverage

Temporal, Geographic and/or Taxonomic information that applies to all data in this dataset:

Time Period
Begin:
1990-01-01
End:
2018-12-13
Geographic Region:
Description:Midwest and Northeast USA
Bounding Coordinates:
Northern:  49.42Southern:  36.56
Western:  -96.73Eastern:  -68.19

Project

Parent Project Information:

Title:Collaborative Research: Building Analytical, Synthesis, and Human Network Skills Needed for Macrosystem Science: a Next Generation Graduate Student Training Model Based on GLEON
Personnel:
Individual: Kathleen C Weathers
Id:https://orcid.org/0000-0002-3575-6508
Role:Principal Investigator
Funding: NSF EF-1137327 and EF-1702991

Maintenance

Maintenance:
Description:completed
Frequency:
Other Metadata

Additional Metadata

additionalMetadata
        |___text '\n    '
        |___element 'metadata'
        |     |___text '\n      '
        |     |___element 'unitList'
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'metersPerHectare'
        |     |     |     |  \___attribute 'multiplierToSI' = ''
        |     |     |     |  \___attribute 'name' = 'metersPerHectare'
        |     |     |     |  \___attribute 'parentSI' = ''
        |     |     |     |  \___attribute 'unitType' = ''
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'nominalMonth'
        |     |     |     |  \___attribute 'multiplierToSI' = ''
        |     |     |     |  \___attribute 'name' = 'nominalMonth'
        |     |     |     |  \___attribute 'parentSI' = ''
        |     |     |     |  \___attribute 'unitType' = ''
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n      '
        |     |___text '\n    '
        |___text '\n  '

EDI is a collaboration between the University of New Mexico and the University of Wisconsin – Madison, Center for Limnology:

UNM logo UW-M logo