MODULE DEVELOPMENT AND TESTING
Module teaching materials were developed by T.N. Moore, C.C. Carey, and R.Q. Thomas to provide instructors of undergraduate ecology courses with a ready-to-use, adaptable module that could be implemented in a 3-4 hour time period to introduce undergraduates to ecological forecasting.
As the fifth module within the suite of Macrosystems EDDIE (www.macrosystemseddie.org) teaching materials, this module was developed to teach students macrosystems ecology and ecolgoical forecasting. The overarching goal of this module is for students to learn fundamental concepts about ecological forecasting and build a forecast for a NEON site. Students work with an R Shiny application to visualize data, build a model, generate a forecast with uncertainty, and then compare the forecast with observations. As a secondary goal, Macrosystems EDDIE modules introduce students to advanced computational tools as a way to manage, analyze, visualize, and interpret high-frequency and long-term ecological data sets; conduct ecosystem modeling; and generate ecological forecasts with quantified uncertainty.
The specific student learning goals for this module are that by the end of the module, students will be able to:
- Describe an ecological forecast and the iterative forecasting cycle.
- Explore and visualize NEON data (Activity A).
- Construct a simple ecological model to generate forecasts of ecosystem primary productivity with uncertainty (Activity B).
- Adjust model parameters and inputs to study how they affect forecast performance relative to observations (Activity B).
- Compare productivity forecasts among NEON sites in different ecoclimatic regions (Activity C).
The module was assessed by volunteer faculty testers during the 2021-2022 academic year. Faculty testers provided feedback that was used to update and optimize teaching materials. Moore, Carey, and Thomas also used student pre- and post-module assessment questions to gauge effectiveness of teaching materials for achieving module learning goals. Pedagogical specialists with the Science Education Resource Center at Carleton College assisted with assessment development and implementation.
MODULE WORKFLOW
Workflow for this module:
- Give students their handout ahead of time to read over prior to class, or distribute handouts when they arrive to class.For virtual instruction, we recommend uploading the handout to a learning management system (e.g., Blackboard, Canvas, Moodle) for students to fill in questions as they proceed through the module activities.
- Instructor gives a brief PowerPoint presentation that introduces ecological forecasting, the iterative forecasting cycle, forecast uncertainty, and a basic ecosystem productivity model.
- After the presentation, the students divide into pairs. Each pair selects their own NEON site and visualizes their site's data, which is used to build and calibrate an ecosystem productivity model (Activity A). The two students within a pair each build their own model with unique inputs and parameters to compare the performance of two different models for the same ecosystem. For virtual instruction, we recommend putting two pairs together (n=4 students) into separate Zoom breakout rooms during this activity so the two pairs can compare results.
- The instructor then introduces Activity B using a few PowerPoint slides. For virtual instruction, this would entail having the students come back to the main Zoom room for a short check-in.
- The students work in their pairs to create hypotheses about how they expect their site's productivity to change in the future, forecast the productivity using each model, and investigate how the forecast uncertainty changes with different model inputs and parameters (Activity B). Students first compare their forecasts with their partner's and then revisit their initial hypotheses to see if they are supported or need to be updated. For virtual instruction, we recommend putting the two pairs back into the same Zoom breakout rooms.
- Student pairs then apply their ecological model to a second NEON site (the same site that the other team in their breakout room is working on) and generate ecological forecasts for this second site using their initial productivity model (Activity C). The students work together in a group to present the results from their two sites and two different models and discuss why the forecasts are similar or different among the different sites and models.
For more information, we refer users to the website and R Shiny application listed below.
WEBSITE & PUBLICATIONS
Moore, T.N., Carey, C.C., and Thomas, R.Q. 2022. Macrosystems EDDIE Module 5: Introduction to Ecological Forecasting. https://module5.macrosystemseddie.org.
Moore, T.N., Carey, C.C., and Thomas, R.Q. 2022. Macrosystems EDDIE Module 5: Introduction to Ecological Forecasting (R Shiny application) (v1.1). Zenodo. https://doi.org/10.5281/zenodo.6363500