Data Package Metadata   View Summary

Meta-analytical data on soil organic, particulate organic, and mineral-associated organic carbon under nitrogen fertilization, elevated atmospheric carbon dioxide, atmospheric warming, increased precipitation, drought, and their combined effects

General Information
Data Package:
Local Identifier:edi.855.1
Title:Meta-analytical data on soil organic, particulate organic, and mineral-associated organic carbon under nitrogen fertilization, elevated atmospheric carbon dioxide, atmospheric warming, increased precipitation, drought, and their combined effects
Alternate Identifier:DOI PLACE HOLDER
Abstract:

Data were harvested from journal articles found on the Web of Science Core Collection and the ProQuest Agricultural and Environmental Database that studied soil organic matter fraction carbon responses to global changes (nitrogen fertilization, elevated atmospheric carbon dioxide, atmospheric warming, increased and decreased precipitation, and combined effects). Soil organic carbon fractions were designated as particulate organic carbon or mineral-associated organic carbon based on size and density cutoffs. Relevant metadata, including article information (authors, publication year), environmental information (soil type, climate, and land use), and experiment information (rates, methods) were also added to the dataset.

Publication Date:2021-06-17

Time Period
Begin:
1994
End:
2020

People and Organizations
Contact:Rocci, Katherine S (Colorado State University) [  email ]
Contact:Cotrufo, M Francesca (Colorado State University) [  email ]
Creator:Rocci, Katherine S (Colorado State University)
Creator:Lavallee, Jocelyn M (Colorado State University)
Creator:Stewart, Catherine E (United States Department of Agriculture – Agricultural Research service)
Creator:Cotrufo, M Francesca (Colorado State University)

Data Entities
Data Table Name:
compiled data
Description:
compiled data on soil organic, particulate organic, and mineral-associated organic carbon
Detailed Metadata

Data Entities


Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/855/1/2e4157dfeeecaaf5b571ec22f43848b3
Name:compiled data
Description:compiled data on soil organic, particulate organic, and mineral-associated organic carbon
Number of Records:608
Number of Columns:96

Table Structure
Object Name:Roccietal_GC-SOM-MA_data.csv
Size:255332 bytes
Authentication:2b689d1af42feffb105b202208bdf44b Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 
Column Name:GC_factor  
ID  
ES_ID  
Author  
Year  
Exp_Type  
Exp_Length  
Soil_Type  
Per_sand  
Per_silt  
Per_clay  
Soil_Bd  
Soil_pH  
del_soil_pH  
soil_moisture  
del_soil_mositure  
Deep_depth  
Soil_Depth  
Depth_decriptor  
Soil_N_cov  
Soil_N  
soil_N_units  
N_fert_cov  
N_fert  
N_fert_units  
N-fixers  
Continent  
State_Region  
Latitude  
Longitude  
Site_N  
Exp_N  
Biome_Broad  
Biome_Spec  
AG-biomass  
del_AGB  
BG-biomass  
del_BGB  
Dom_Veg  
LQ_CN  
Climate  
Temp  
Temp_comments  
Precip  
Clim_imputed  
Background_N  
N_Type  
N_rate_total  
N_rate_by-year  
Ambient_CO2_goal  
CO2_Rate_goal  
Ambient_CO2_actual  
CO2_Rate_actual  
CO2_units  
CO2_type  
eCO2_goal  
CO2_dif  
W_Rate_Air  
W_Rate_Soil  
Temp_verified?  
W_Rate_descriptor  
W_soil_depth  
W_soil_yr  
W_soil_summer  
W_soil_winter  
W_Type  
Precip_del  
Precip_timing  
Interaction  
Source  
Response_units  
Impute_error  
Total_trt_final  
Total_trt_err_final  
Total_trt_N  
MAOM_trt_final  
MAOM_trt_err_prop  
MAOM_trt_err_final  
MAOM_frac  
MAOM_trt_N  
POM_trt_final  
POM_trt_err_prop  
POM_trt_err_final  
POM_frac  
POM_trt_N  
Total_cntrl_final  
Total_cntrl_err_final  
Total_cntrl_N  
MAOM_cntrl_final  
MAOM_cntrl_err_prop  
MAOM_cntrl_err_final  
MAOM_cntrl_N  
POM_cntrl_final  
POM_cntrl_err_prop  
POM_cntrl_err_final  
POM_cntrl_N  
Definition:Type of global change manipulation studystudy number from initial full PDF downloadunique observation ID within a given GC_factorLead author of article data is fromYear of publicationexperiment type grouped broadly into field, greenhouse, or lab (incubation)How long the experiment occurred forsoil texture desciptive name (ex: USDA classification)percent sand in soilpercent silt in soilpercent clay in soilsoil bulk densitysoil pH initial/controlchange in soil pH with treatmentsoil moisturechange in soil moisture under treatmentdeepest depth of soil coresize of sampling depth of soil (i.e. 10-30cm depth would be 20cm)description of depth (which depth increment is the soil from)eCO2: soil N converted to consistent units of gramNPerKilogramSoileCO2: Soil nitrogen concentration in the soil - units recorded in following columnunit used in studyeCO2: fertilizer N converted into consistnet units of kilogramNPerHectarePerYeareCO2: fertilizer addition that is not part of an N addition experiment- units recorded in following columnunit used in studyeCO2: whether nitrogen fixing plants were present at the siteAsia, Europe, Africa, SA (South America), NA (North America), Oceania (Australia, NZ, Pacific Islands)somewhat specific location (i.e. Southern California, Eastern Colorado, etc.)latitude (+ for north and - for south)longitude (+ for east and - for west)still needs descriptionstill needs descriptionBroad biome classification: forest, grassland, agricultureSpecific biome classification: more detail or finer scale biome classificationstanding aboveground biomasschange in aboveground biomass with treatmentbelowground (root) biomass per areachange in root biomass with treatmentdominant vegetationLQ= litter quality - C:N of litterMajor climatic region: temperate, polar, tropical, arid, semi-arid, mediterraneanMean annual temperature for siteComments related to temperatureMean annual precipitation for site in millimeterPerYear unless otherwise notedWere climate data imputed?N: background N deposition in kilogramNPerHectarePerYearN: type of N addedN: total N added over entire experiment timeN: N added by yeareCO2: attempted ambient concentration of CO2 in units under CO2_unitseCO2: attempted elevated concentration of CO2 in units under CO2_unitseCO2: actual ambient concentration of CO2 in units under CO2_unitseCO2: actual elevated concentration of CO2 in units under CO2_unitseCO2: units of CO2 reported in the papereCO2: method of CO2 introductioneCO2: attempted elevated carbon dioxide leveleCO2: difference between ambient and elevated CO2W: change in heat in the air degree celsiusW: change in heat in the soil degree celsiusW: Was temperature of warming verified?W: more information on specifics of warmingW: soil depth at which soil temperature was measuredW: average soil warming rate over the yearW: soil warming rate over the summer/growing seasonW: soil warming rate over the winter/non-growing seasonW: type of warmingiP/dP: change in precipitation - negative if decrease, positive if increase. % (if no units present)iP/dP: timing of precipitation addition/reduction if providedtype of interaction between global change (GC) factors if combined GC factorsWhere data is from in article (i.e. figure 2, table 3, etc)units for responses (some different than gC/kg soil)Was error imputed? Equation for error: SD-j = X-j*(sum of SD-c/sum of X-c), where X -j is the observed mean of the study missing its standard deviation, and X-c and SD-c are the mean and standard deviation, respectively, for a study with complete information.total soil C under treatment in response units denoted in earlier columnerror for total soil C under treatment based on basic error transformationsample size for total soil C under treatmentMAOM C under treatment in response units denoted in earlier columnerror for MAOM C under treatment with proper error propagationerror for MAOM C under treatment based on basic error transformationfractionation typesample size for MAOM C under treatmentPOM C under treatment in response units denoted in earlier columnerror for POM C under treatment with proper error propagationerror for POM C under treatment based on basic error transformationfractionation typesample size for POM C under treatmenttotal soil C under control (no global change treatment) in response units denoted in earlier columnerror for total soil C under control (no global change treatment) based on basic error transformationsample size for total soil C under control (no global change treatment)MAOM C under control (no global change treatment) in response units denoted in earlier columnerror for MAOM C under control (no global change treatment) with proper error propagationerror for MAOM C under control (no global change treatment) based on basic error transformationsample size for MAOM C under control (no global change treatment)POM C under control (no global change treatment) in response units denoted in earlier columnerror for POM C under control (no global change treatment) with proper error propagationerror for POM C under control (no global change treatment) based on basic error transformationsample size for POM C under control (no global change treatment)
Storage Type:string  
string  
string  
string  
float  
string  
float  
string  
float  
float  
float  
float  
float  
float  
string  
float  
float  
float  
string  
float  
string  
string  
float  
float  
string  
string  
string  
string  
float  
float  
float  
float  
string  
string  
float  
float  
float  
float  
string  
string  
string  
float  
string  
string  
string  
float  
string  
float  
float  
string  
float  
string  
float  
string  
string  
float  
float  
string  
string  
string  
string  
float  
float  
float  
float  
string  
string  
string  
string  
string  
string  
string  
float  
float  
float  
float  
float  
float  
string  
float  
float  
float  
float  
string  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
Measurement Type:nominalnominalnominalnominalrationominalrationominalratioratioratioratioratiorationominalratioratiorationominalrationominalnominalratiorationominalnominalnominalnominalratioratioratiorationominalnominalratioratioratiorationominalnominalnominalrationominalnominalnominalrationominalratiorationominalrationominalrationominalnominalratiorationominalnominalnominalnominalratioratioratiorationominalnominalnominalnominalnominalnominalnominalratioratioratioratioratiorationominalratioratioratiorationominalratioratioratioratioratioratioratioratioratioratioratioratio
Measurement Values Domain:
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeN
Definitionnitrogen fertilization
Source
Code Definition
CodeeCO2
Definitionelevated CO2
Source
Code Definition
CodeW
Definitionwarming
Source
Code Definition
CodeiP
Definitionincreased precipitation
Source
Code Definition
CodedP
Definitiondecreased precipitation
Source
Code Definition
CodeN+eCO2
Definitionnitrogen fertilization combined with elevated CO2
Source
Code Definition
CodeW+eCO2
Definitionwarming combined with elevated CO2
Source
Code Definition
CodeW+iP
Definitionwarming combined with increased precipitation
Source
Definitionstudy number from initial full PDF download
Definitionunique observation ID within a given GC_factor
DefinitionLead author of article data is from
UnitnominalYear
Typenatural
Min1994 
Max2019 
Definitionexperiment type grouped broadly into field, greenhouse, or lab (incubation)
Unitmonths
Typereal
Min0.75 
Max384 
Definitionsoil texture desciptive name (ex: USDA classification)
Unitpercent
Typereal
Min
Max100 
Unitpercent
Typereal
Min
Max77 
Unitpercent
Typereal
Min1.6 
Max60.6 
UnitgramsPerCubicCentimeter
Typereal
Min
Max17.4 
Unitdimensionless
Typereal
Min3.21 
Max8.56 
Unitdimensionless
Typereal
Min-0.84 
Max0.31 
Definitionsoil moisture
Unitpercent
Typereal
Min-12 
Max5.52 
Unitcentimeter
Typereal
Min
Max200 
Unitcentimeter
Typereal
Min
Max50 
Definitiondescription of depth (which depth increment is the soil from)
UnitgramPerKilogram
Typereal
Min0.228225806 
Max
DefinitioneCO2: Soil nitrogen concentration in the soil - units recorded in following column
Definitionunit used in study
UnitkilogramsPerHectarePerYear
Typereal
Min
Max537 
Unitdimensionless
Typenatural
Min
Max537 
Definitionunit used in study
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeN
Definitionno
Source
Code Definition
CodeY
Definitionyes
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeAfrica
DefinitionAfrica
Source
Code Definition
CodeAsia
DefinitionAsia
Source
Code Definition
CodeEurope
DefinitionEurope
Source
Code Definition
CodeOceania
DefinitionAustralia, NZ, Pacific Islands
Source
Code Definition
CodeSA
DefinitionSouth America
Source
Definitionsomewhat specific location (i.e. Southern California, Eastern Colorado, etc.)
Unitdegree
Typereal
Min-43.4 
Max96.4 
Unitdegree
Typereal
Min-122.917 
Max175.27 
Unitdimensionless
Typenatural
Min
Max90 
Unitdimensionless
Typenatural
Min
Max94 
DefinitionBroad biome classification: forest, grassland, agriculture
DefinitionSpecific biome classification: more detail or finer scale biome classification
UnitkilogramPerMeterSquared
Typereal
Min0.0033 
Max25.4 
UnitkilogramPerMeterSquared
Typereal
Min-5.1 
Max3.4 
UnitkilogramPerMeterSquared
Typereal
Min0.0463 
Max7.13 
UnitkilogramPerMeterSquared
Typereal
Min-2.35 
Max1.15 
Definitiondominant vegetation
DefinitionLQ= litter quality - C:N of litter
DefinitionMajor climatic region: temperate, polar, tropical, arid, semi-arid, mediterranean
Unitcelsius
Typereal
Min-1.7 
Max28.5 
DefinitionComments related to temperature
DefinitionMean annual precipitation for site in millimeterPerYear unless otherwise noted
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeN
Definitionno
Source
Code Definition
CodeY
Definitionyes
Source
UnitkilogramsPerHectarePerYear
Typereal
Min3.6 
Max59.5 
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code(NH4)2SO4
Definition(NH4)2SO5
Source
Code Definition
CodeAN
Definitionammonium nitrate
Source
Code Definition
CodeAN+LDM
Definitionammonium nitrate + manure
Source
Code Definition
CodeAN+manure
Definitionammonium nitrate + liquid dairy manure
Source
Code Definition
CodeAS
Definitionammonium sulfate - NH42SO4
Source
Code Definition
CodeKNO3
DefinitionKNO4
Source
Code Definition
CodeLDM
Definitionliquid dairy manure
Source
Code Definition
CodeNaNO3
DefinitionNaNO4
Source
Code Definition
CodeNH4Cl
DefinitionNH4Cl
Source
Code Definition
CodeUAN
Definitionurea ammonium nitrate
Source
Code Definition
Codeurea
Definitionurea
Source
Code Definition
Codeurea-AN
Definitionurea-ammonium nitrate
Source
Code Definition
Codeurea ammonium nitrate
Definitionurea ammonium nitrate
Source
Code Definition
Codeurea/UAN
Definitionurea/urea ammonium nitrate
Source
Code Definition
Codeurea+compound
Definitionurea+compound
Source
UnitkilogramsPerHectare
Typereal
Min10 
Max13600 
UnitkilogramsPerHectarePerYear
Typereal
Min
Max960 
DefinitioneCO2: attempted ambient concentration of CO2 in units under CO2_units
Unitdimensionless
Typenatural
Min60 
Max700 
DefinitioneCO2: actual ambient concentration of CO2 in units under CO2_units
Unitdimensionless
Typereal
Min60 
Max736 
DefinitioneCO2: units of CO2 reported in the paper
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeFACE
Definitionfree air ring
Source
Code Definition
CodeFACE-M
Definitionmimic of face but not part of FACE exps
Source
Code Definition
CodeCH
DefinitionCO2 piped into chamber
Source
Code Definition
CodeSC
Definitionscreened plots
Source
UnitpartsPerMillion
Typereal
Min475 
Max700 
Unitdimensionless
Typereal
Min120 
Max350 
DefinitionW: change in heat in the air degree celsius
DefinitionW: change in heat in the soil degree celsius
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeN
Definitionno
Source
Code Definition
Codenot in air
Definitionnot in air
Source
Code Definition
Codey
Definitionyes
Source
Code Definition
CodeY
Definitionyes
Source
DefinitionW: more information on specifics of warming
Unitcentimeter
Typereal
Min0.5 
Max15 
Unitcelsius
Typereal
Min0.4 
Max9.9 
Unitcelsius
Typereal
Min
Max9.9 
Unitcelsius
Typereal
Min
Max9.9 
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeOTC
Definitionopen top chamber
Source
Code Definition
CodeAIR
Definitionaboveground infrared heating lamp
Source
Code Definition
CodeBC
Definitionbelowground resistance heating cables
Source
Code Definition
CodeALT
Definitionaltitude gradient
Source
Code Definition
CodeCTC
Definitionclosed top chamber
Source
Code Definition
CodeP
Definitionpassive
Source
Code Definition
CodeGEO
Definitiongeothermal
Source
DefinitioniP/dP: change in precipitation - negative if decrease, positive if increase. % (if no units present)
DefinitioniP/dP: timing of precipitation addition/reduction if provided
Definitiontype of interaction between global change (GC) factors if combined GC factors
DefinitionWhere data is from in article (i.e. figure 2, table 3, etc)
Definitionunits for responses (some different than gC/kg soil)
DefinitionWas error imputed? Equation for error: SD-j = X-j*(sum of SD-c/sum of X-c), where X -j is the observed mean of the study missing its standard deviation, and X-c and SD-c are the mean and standard deviation, respectively, for a study with complete information.
Unitdimensionless
Typereal
Min0.5 
Max2693 
Unitdimensionless
Typereal
Min
Max1604.415782 
Unitnumber
Typenatural
Min
Max15 
Unitdimensionless
Typereal
Min0.23 
Max1097.5 
Unitdimensionless
Typereal
Min0.02078461 
Max629.5188639 
Unitdimensionless
Typereal
Min
Max629.5188639 
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeD
Definitiondensity
Source
Code Definition
CodeS
Definitionsize
Source
Code Definition
CodeSD
Definitionsize and density
Source
Unitnumber
Typenatural
Min
Max16 
Unitdimensionless
Typereal
Min0.00083333 
Max2541 
Unitdimensionless
Typereal
Min8.66e-05 
Max763.8246 
Unitdimensionless
Typereal
Min8.66e-05 
Max658.119 
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeD
Definitiondensity
Source
Code Definition
CodeS
Definitionsize
Source
Code Definition
CodeSD
Definitionsize and density
Source
Unitnumber
Typenatural
Min
Max16 
Unitdimensionless
Typereal
Min0.5 
Max2529 
Unitdimensionless
Typereal
Min
Max1170.856097 
Unitdimensionless
Typenatural
Min
Max16 
Unitdimensionless
Typereal
Min0.26 
Max1133.4 
Unitdimensionless
Typereal
Min0.074 
Max636.8673331 
Unitdimensionless
Typereal
Min0.074 
Max636.8673331 
Unitnumber
Typenatural
Min
Max16 
Unitdimensionless
Typereal
Min0.00113333 
Max1810 
Unitdimensionless
Typereal
Min
Max520.918 
Unitdimensionless
Typereal
Min
Max460.464 
Unitnumber
Typenatural
Min
Max16 
Missing Value Code:                      
CodeNA
Expldid not measure
                                             
CodeNA
Explno 0N control
 
CodeNA
Explno 0N control
                                   
CodeNA
Explnot available
                                                                             
Accuracy Report:                                                                                                                                                                                                
Accuracy Assessment:                                                                                                                                                                                                
Coverage:                                                                                                                                                                                                
Methods:                                                                                                                                                                                                

Data Package Usage Rights

This information is released under the Creative Commons license - Attribution - CC BY (https://creativecommons.org/licenses/by/4.0/). The consumer of these data ("Data User" herein) is required to cite it appropriately in any publication that results from its use. The Data User should realize that these data may be actively used by others for ongoing research and that coordination may be necessary to prevent duplicate publication. The Data User is urged to contact the authors of these data if any questions about methodology or results occur. Where appropriate, the Data User is encouraged to consider collaboration or co-authorship with the authors. The Data User should realize that misinterpretation of data may occur if used out of context of the original study. While substantial efforts are made to ensure the accuracy of data and associated documentation, complete accuracy of data sets cannot be guaranteed. All data are made available "as is." The Data User should be aware, however, that data are updated periodically and it is the responsibility of the Data User to check for new versions of the data. The data authors and the repository where these data were obtained shall not be liable for damages resulting from any use or misinterpretation of the data. Thank you.

Keywords

By Thesaurus:
(No thesaurus)Soil organic matter, elevated CO2
LTER Controlled Vocabularysoil carbon, climate change, warming, fertilization, irrigation

Methods and Protocols

These methods, instrumentation and/or protocols apply to all data in this dataset:

Methods and protocols used in the collection of this data package
Description:

We conducted a systematic meta-analysis of soil bulk, mineral-associated, and particulate organic carbon (SOC, MAOC, and POC) responses to global environmental changes using two databases, the Web of Science Core Collection and the ProQuest Agricultural and Environmental Science Database. Search terms used Boolean combinations of SOC terms and global change terms to target studies that employed both a global change experiment and SOC fractionation. Studies were limited to those in English. We considered nitrogen (N) fertilization, warming, elevated carbon dioxide (CO2), increased precipitation, and drought as global environmental changes. Studies that addressed multiple global change factors were retrieved from searches for individual global change factors. We included any soil depth, study environment (greenhouse, field, laboratory), and land cover type (cropland, grasslands, forests) to maximize the amount of data. We acknowledge that N fertilization is often integral to cropland management. However, we refer to N fertilization as a global change also in croplands since we evaluate SOC pool responses with and without N fertilization, such that the premise is the same, regardless of the system. With this search criteria, we retrieved 3,378 studies, which we then filtered in two ways. First, we analyzed abstracts of all studies and kept those that met the following criteria: (1) they were primary literature (not reviews, meta-analyses, or book chapters), (2) they appeared to measure SOC fractions that were physically separated as, or could be combined to, MAOC and POC, as explained below, (3) they measured the response of POC and/or MAOC and SOC to a global change factor with a control that was not treated with that global change factor, and (4) they were not duplicate studies. Following this initial study filtering we were left with 168 total studies which included data for 216 individual global change experiments (since some studies addressed multiple global change factors).

Following initial filtering of the abstracts, we downloaded full PDFs for all studies and performed a second filtering based on whether they met our quality criteria and MAOC and POC definitions, as follows. To be included in this study, SOC, MAOC, and/or POC needed to be measured for at least three replicates, to provide quality and robustness to our dataset. Soil had to be sieved to 2 mm or less and dispersed using either sonication, sodium hexametaphosphate, or shaking with glass beads such that aggregates would be adequately broken down. To be considered MAOC, the dispersed soil fraction had to be smaller than 50-63 μm, if separated by size, or heavier than 1.6-1.85 g cm-3, if separated by density. POC was defined as the complement to MAOC, such that dispersed soil fractions larger than 50-63 μm and lighter than 1.6-1.85 g cm-3 were considered POC. For more complex fractionations that still employed cutoffs for size and density defined above, fractions were summed to total MAOC and POC pools based on the above definitions. Heavy, coarse SOC fractions (i.e. greater than 1.6 g cm-3 and greater than 50-63 microm; typically less than 10% of total SOC) were added to the POC pool, due to their relatively fast turnover times that suggest lack of stabilization via mineral association.

We extracted data from tables using Tabula software (https://tabula.technology/) or from figures using the metaDigitize package in R. If crucial data were missing, we contacted authors and if no response was provided by May 2020 (after 2-3 attempts at contact) papers were removed from the analysis. If error type (standard deviation versus standard error) was not presented with the data, and the author did not respond, we assumed error type to be standard error, for more conservative error estimates. Following the second filtering, we were left with a final count of 605 observations from 98 total studies across the world ranging in publication years from 1994 to 2019, with 428 observations and 52 studies focusing on N fertilization, 42 observations and 15 studies on warming, 42 observations and 24 studies on elevated CO2, 18 observations and 5 studies on increased precipitation, and 57 observations and 17 studies that addressed multiple global change factors. For these final studies, we extracted data on soil organic matter C (SOC, MAOC, and POC; g C kg soil-1), global change factors (years under factor, level of factor, etc.), and environmental variables (soil type and depth, plant biomass, climate, etc.). Some data of interest, notably data for microbial activity and biomass, were not reported frequently enough to extract. Where only total soil C was reported and soil pH was below 7, we assumed inorganic carbon was negligible, and thus recorded total soil C as SOC. Two studies with soil pH above 7 did not clearly indicate separation of inorganic and organic C but these were not influential in our study, according to the sensitivity analysis. We only included reported fraction data and did not calculate fractions by difference (e.g. SOC-POC = MAOC), as this could produce errors due to incomplete or over-recovery during fractionation. Using only reported data led to different samples sizes for SOC, MAOC, and POC.

Data sources:

Allard V, Newton PCD, Lieffering M, Soussana JF, Carran RA, Matthew C (2005) Increased quantity and quality of coarse soil organic matter fraction at elevated CO2 in a grazed grassland are a consequence of enhanced root growth rate and turnover Plant and Soil 276:49-60 doi:10.1007/s11104-005-5675-9

Black CK, Davis SC, Hudiburg TW, Bernacchi CJ, DeLucia EH (2017) Elevated CO2 and temperature increase soil C losses from a soybean-maize ecosystem Global Change Biology 23:435-445 doi:10.1111/gcb.13378

Bock M, Glaser B, Millar N (2007) Sequestration and turnover of plant- and microbially derived sugars in a temperate grassland soil during 7 years exposed to elevated atmospheric pCO2 Global Change Biology 13:478-490 doi:http://dx.doi.org/10.1111/j.1365-2486.2006.01303.x

Borges BMMN, Mendes Coutinho EL, Silveira ML, Ricardo de Oliveira B (2019) Short-term impacts of high levels of nitrogen fertilization on soil carbon dynamics in a tropical pasture Catena 174:413-416 doi:http://dx.doi.org/10.1016/j.catena.2018.11.033

Bradford MA, Fierer N, Jackson RB, Maddox TR, Reynolds JF (2008a) Nonlinear root-derived carbon sequestration across a gradient of nitrogen and phosphorous deposition in experimental mesocosms Global Change Biology 14:1113-1124 doi:10.1111/j.1365-2486.2008.01564.x

Bradford MA, Fierer N, Reynolds JF (2008b) Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils Functional Ecology 22:964-974 doi:10.1111/j.1365-2435.2008.01404.x

Bremer E, Janzen H, Ellert B, McKenzie R (2008) Soil organic carbon after twelve years of various crop rotations in an Aridic Boroll Soil Science Society of America Journal 72:970-974

Bremer E, Janzen HH, Johnston AM (1994) Sensitivity of total, light fraction and mineralizable organic matter to management practices in a Lethbridge soil Canadian Journal of Soil Science 74:131-138

Chen GT, Tu LH, Chen GS, Hu JY, Han ZL (2018) Effect of six years of nitrogen additions on soil chemistry in a subtropical Pleioblastus amarus forest, Southwest China Journal of Forestry Research 29:1657-1664 doi:10.1007/s11676-017-0587-0

Chen X, Liu J, Deng Q, Yan J, Zhang D (2012a) Effects of elevated CO2 and nitrogen addition on soil organic carbon fractions in a subtropical forest Plant and Soil 357:25-34 doi:http://dx.doi.org/10.1007/s11104-012-1145-3

Chen XM, Liu JX, Deng Q, Yan JH, Zhang DQ (2012b) Effects of elevated CO2 and nitrogen addition on soil organic carbon fractions in a subtropical forest Plant and Soil 357:25-34 doi:10.1007/s11104-012-1145-3

Cheng S, Fang H, Xu M, Geng J, He S, Yu G, Cao Z (2018) Regulation of plant-soil-microbe interactions to soil organic carbon in natural ecosystems under elevated nitrogen deposition: A review Shengtai Xuebao = Acta Ecologica Sinica:8285

Cheng X, Luo Y, Xu X, Sherry R, Zhang Q (2011) Soil organic matter dynamics in a North America tallgrass prairie after 9 yr of experimental warming Biogeosciences 8:1487

Coulter JA, Nafziger ED, Wander MM (2009) Soil Organic Matter Response to Cropping System and Nitrogen Fertilization Agronomy journal 101:592-599 doi:http://dx.doi.org/10.2134/agronj2008.0152x

Cui S et al. (2014) Carbon and nitrogen responses of three old world bluestems to nitrogen fertilization or inclusion of a legume Field Crops Research 164:45-53 doi:10.1016/j.fcr.2014.05.011

Cusack DF, Silver WL, Torn MS, McDowell WH (2011) Effects of nitrogen additions on above-and belowground carbon dynamics in two tropical forests Biogeochemistry 104:203-225

De Feudis M et al. (2019) Small altitudinal change and rhizosphere affect the SOM light fractions but not the heavy fraction in European beech forest soil Catena 181 doi:http://dx.doi.org/10.1016/j.catena.2019.104091

Dorodnikov M, Kuzyakov Y, Fangmeier A, Wiesenberg GLB (2011) C and N in soil organic matter density fractions under elevated atmospheric CO2: Turnover vs. stabilization Soil Biology & Biochemistry 43:579-589 doi:10.1016/j.soilbio.2010.11.026

Dou FG, Hons FM (2006) Tillage and nitrogen effects on soil organic matter fractions in wheat-based systems Soil Science Society of America Journal 70:1896-1905 doi:10.2136/sssaj2005.0229

Fang XM, Chen FS, Hu XF, Yuan PC, Li J, Chen X (2014) Aluminum and nutrient interplay across an age-chronosequence of tea plantations within a hilly red soil farm of subtropical China Soil Science and Plant Nutrition 60:448-459 doi:10.1080/00380768.2014.912950

Ferreira GWD, Oliveira FCC, Silva LOG, Souza J, Soares EMB, Araujo EF, Silva IR (2018) Nitrogen Alters Initial Growth, Fine-Root Biomass and Soil Organic Matter Properties of a Eucalyptus dunnii Maiden Plantation in a Recently Afforested Grassland in Southern Brazil Forests 9 doi:10.3390/f9020062

Finn D, Robertson F, Page K, Catton K, Kienzle M, Dalal R, Armstrong R (2016) Ecological stoichiometry controls the transformation and retention of plant-derived organic matter to humus in response to nitrogen fertilisation Soil biology & biochemistry 99:117-127 doi:http://dx.doi.org/10.1016/j.soilbio.2016.05.006

Frasier I, Noellemeyer E, Figuerola E, Erijman L, Permingeat H, Quiroga A (2016) High quality residues from cover crops favor changes in microbial community and enhance C and N sequestration Global Ecology and Conservation 6:242-256 doi:10.1016/j.gecco.2016.03.009

Garten CT, Classen AT, Norby RJ (2009) Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment Plant and Soil 319:85-94 doi:http://dx.doi.org/10.1007/s11104-008-9851-6

Griepentrog M, Eglinton TI, Hagedorn F, Schmidt MWI, Wiesenberg GLB (2015) Interactive effects of elevated CO2 and nitrogen deposition on fatty acid molecular and isotope composition of above- and belowground tree biomass and forest soil fractions Global change biology 21:473-486 doi:http://dx.doi.org/10.1111/gcb.12666

Guan S, Zhang J, An N, He N, Zong N, Shi P, He Y (2018) Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow Soil biology & biochemistry 116:224-236 doi:http://dx.doi.org/10.1016/j.soilbio.2017.10.011

Hagedorn F, Spinnler D, Siegwolf R (2003) Increased N deposition retards mineralization of old soil organic matter Soil Biology & Biochemistry 35:1683-1692 doi:10.1016/j.soilbio.2003.08.015

Haile-Mariam S, Cheng W, Johnson DW, Ball JT, Paul EA (2000) Use of carbon-13 and carbon-14 to measure the effects of carbon dioxide and nitrogen fertilization on carbon dynamics in ponderosa pine Soil Science Society of America journal 64:1984-1993

He NP, Chen QS, Han XG, Yu GR, Li LH (2012) Warming and increased precipitation individually influence soil carbon sequestration of Inner Mongolian grasslands, China Agriculture Ecosystems & Environment 158:184-191 doi:10.1016/j.agee.2012.06.010

Henry HAL, Juarez JD, Field CB, Vitousek PM (2005) Interactive effects of elevated CO2, N deposition and climate change on extracellular enzyme activity and soil density fractionation in a California annual grassland Global Change Biology 11:1808-1815 doi:10.1111/j.1365-2486.2005.001007.x

Hofmockel KS, Zak DR, Moran KK, Jastrow JD (2011) Changes in forest soil organic matter pools after a decade of elevated CO2 and O-3 Soil Biology & Biochemistry 43:1518-1527 doi:10.1016/j.soilbio.2011.03.030

Hoosbeek MR, Scarascia-Mugnozza GE (2009) Increased Litter Build Up and Soil Organic Matter Stabilization in a Poplar Plantation After 6 Years of Atmospheric CO(2) Enrichment (FACE): Final Results of POP-EuroFACE Compared to Other Forest FACE Experiments Ecosystems 12:220-239 doi:http://dx.doi.org/10.1007/s10021-008-9219-z

Insam H et al. (1999) Responses of the soil microbiota to elevated CO2 in an artificial tropical ecosystem Journal of Microbiological Methods 36:45-54 doi:10.1016/s0167-7012(99)00010-x

Iversen CM, Keller JK, Garten CT, Norby RJ (2012) Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of CO2-enrichment Global Change Biology 18:1684-1697 doi:http://dx.doi.org/10.1111/j.1365-2486.2012.02643.x

Jantalia CP, Halvorson AD (2011) Nitrogen Fertilizer Effects on Irrigated Conventional Tillage Corn Yields and Soil Carbon and Nitrogen Pools Agronomy journal 103:871-878 doi:http://dx.doi.org/10.2134/agronj2010.0455

Jastrow J, Miller R, Owensby C (2000) Long-term effects of elevated atmospheric CO2 on below-ground biomass and transformations to soil organic matter in grassland Plant and Soil 224:85-97 doi:http://dx.doi.org/10.1023/A:1004771805022

Lagomarsino A, Grego S, Marhan S, Moscatelli MC, Kandeler E (2009) Soil management modifies micro-scale abundance and function of soil microorganisms in a Mediterranean ecosystem European Journal of Soil Science 60:2-12 doi:10.1111/j.1365-2389.2008.01113.x

Li Z, Li D, Ma L, Yu Y, Zhao B, Zhang J (2019) Effects of straw management and nitrogen application rate on soil organic matter fractions and microbial properties in North China Plain Journal of Soils and Sediments 19:618-628 doi:http://dx.doi.org/10.1007/s11368-018-2102-4

Liang CH, Yin Y, Chen Q (2014) Dynamics of Soil Organic Carbon Fractions and Aggregates in Vegetable Cropping Systems Pedosphere 24:605-612 doi:10.1016/s1002-0160(14)60046-1

Lichter J, Barron SH, Bevacqua CE, Finzi AC, et al. (2005) SOIL CARBON SEQUESTRATION AND TURNOVER IN A PINE FOREST AFTER SIX YEARS OF ATMOSPHERIC CO2 ENRICHMENT Ecology 86:1835-1847

Liebig MA, Varvel GE, Doran JW, Wienhold BJ (2002) Crop sequence and nitrogen fertilization effects on soil properties in the western corn belt Soil Science Society of America journal 66:596-601 doi:http://dx.doi.org/10113/7978

Link SO, Smith JL, Halvorson JJ, Bolton H, Jr. (2003) A reciprocal transplant experiment within a climatic gradient in a semiarid shrub-steppe ecosystem: effects on bunchgrass growth and reproduction, soil carbon, and soil nitrogen Global change biology 9:1097-1105 doi:http://dx.doi.org/10.1046/j.1365-2486.2003.00647.x;

Liu EK, Yan CR, Mei XR, Zhang YQ, Fan TL (2013a) Long-Term Effect of Manure and Fertilizer on Soil Organic Carbon Pools in Dryland Farming in Northwest China Plos One 8 doi:10.1371/journal.pone.0056536

Liu FR, Zhang YM, Luo JX (2018) The effects of experimental warming and CO2 concentration doubling on soil organic carbon fractions of a montane coniferous forest on the eastern Qinghai-Tibetan Plateau European Journal of Forest Research 137:211-221 doi:10.1007/s10342-018-1100-9

Liu L, Zhang T, Gilliam FS, Gundersen P, Zhang W, Chen H, Mo JM (2013b) Interactive Effects of Nitrogen and Phosphorus on Soil Microbial Communities in a Tropical Forest Plos One 8 doi:10.1371/journal.pone.0061188

Ma HL, Zhu JG, Xie ZB, Liu G, Zeng Q (2009) Effects of increased residue biomass under elevated CO2 on carbon and nitrogen in soil aggregate size classes (rice-wheat rotation system, China) Canadian Journal of Soil Science 89:567-577 doi:10.4141/cjss08049

Maillard E et al. (2015) Carbon accumulates in organo-mineral complexes after long-term liquid dairy manure application Agriculture Ecosystems & Environment 202:108-119 doi:10.1016/j.agee.2014.12.013

Malhi SS, Lemke R (2007) Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gas emissions in a second 4-yr rotation cycle Soil & Tillage Research 96:269-283 doi:10.1016/j.still.2007.06.011

Malhi SS, Nyborg M, Solberg ED, McConkey B, Dyck M, Puurveen D (2011) Long-term straw management and N fertilizer rate effects on quantity and quality of organic C and N and some chemical properties in two contrasting soils in Western Canada Biology and Fertility of Soils 47:785-800 doi:10.1007/s00374-011-0587-8

Malhi SS, Wang ZH, Schnitzer M, Monreal CM, Harapiak JT (2005) Nitrogen fertilization effects on quality of organic matter in a grassland soil Nutrient Cycling in Agroecosystems 73:191-199 doi:10.1007/s10705-005-1702-8

Moinet GYK, Cieraad E, Hunt JE, Fraser A, Turnbull MH, Whitehead D (2016) Soil heterotrophic respiration is insensitive to changes in soil water content but related to microbial access to organic matter Geoderma 274:68-78 doi:http://dx.doi.org/10.1016/j.geoderma.2016.03.027

Mujuru L, Rusinamhodzi L, Nyamangara J, Hoosbeek MR (2016) Effects of nitrogen fertilizer and manure application on storage of carbon and nitrogen under continuous maize cropping in Arenosols and Luvisols of Zimbabwe Journal of Agricultural Science 154:242-257 doi:http://dx.doi.org/10.1017/S0021859615000520

Niklaus PA, Glockler E, Siegwolf R, Korner C (2001a) Carbon allocation in calcareous grassland under elevated CO2: a combined 13C pulse-labeling/soil physical fractionation study Functional ecology 15:43-50 doi:http://dx.doi.org/10.1046/j.1365-2435.2001.00485.x

Niklaus PA, Wohlfender M, Siegwolf R, Korner C (2001b) Effects of six years atmospheric CO2 enrichment on plant, soil, and soil microbial C of a calcareous grassland Plant and Soil 233:189-202 doi:10.1023/a:1010389724977

Oliveira FCC, Silva IR, Ferreira GWD, Soares EMB, Silva SR, Silva EF (2018) Contribution of Eucalyptus Harvest Residues and Nitrogen Fertilization to Carbon Stabilization in Ultisols of Southern Bahia Revista Brasileira De Ciencia Do Solo 42 doi:10.1590/18069657rbcs20160340

Parker JL, Fernandez IJ, Rustad LE, Norton SA (2002) Soil organic matter fractions in experimental forested watersheds Water Air and Soil Pollution 138:101-121 doi:10.1023/a:1015516607941

Pendall E, Osanai YUI, Williams AL, Hovenden MJ (2011) Soil carbon storage under simulated climate change is mediated by plant functional type Global Change Biology 17:505-514 doi:http://dx.doi.org/10.1111/j.1365-2486.2010.02296.x

Peralta AL, Wander MM (2008) Soil organic matter dynamics under soybean exposed to elevated CO2 Plant and Soil 303:69-81 doi:10.1007/s11104-007-9474-3

Poeplau C, Thomas Kt, Leblans NIW, Sigurdsson BD (2017) Sensitivity of soil carbon fractions and their specific stabilization mechanisms to extreme soil warming in a subarctic grassland Global change biology 23:1316-1327 doi:http://dx.doi.org/10.1111/gcb.13491

Puissant J et al. (2017) Climate change effects on the stability and chemistry of soil organic carbon pools in a subalpine grassland Biogeochemistry 132:123-139 doi:http://dx.doi.org/10.1007/s10533-016-0291-8

Purakayastha TJ, Rudrappa L, Singh D, Swarup A, Bhadraray S (2008) Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize-wheat.-cowpea cropping system Geoderma 144:370-378 doi:10.1016/j.geoderma.2007.12.006

Qi RM et al. (2016) Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes Applied Soil Ecology 102:36-45 doi:10.1016/j.apsoil.2016.02.004

Rodriguez A, Lovett GM, Weathers KC, Arthur MA, Templer PH, Goodale CL, Christenson LM (2014) Lability of C in temperate forest soils: Assessing the role of nitrogen addition and tree species composition Soil Biology & Biochemistry 77:129-140 doi:10.1016/j.soilbio.2014.06.025

Schnecker Jr, Schindlbacher A, Werner B, Wanek W (2016) Little effects on soil organic matter chemistry of density fractions after seven years of forest soil warming Soil biology & biochemistry 103:300-307 doi:http://dx.doi.org/10.1016/j.soilbio.2016.09.003

Shahbaz M, Kuzyakov Y, Shafique M, Wendland M, Heitkamp F (2017) Decadal Nitrogen Fertilization Decreases Mineral-Associated and Subsoil Carbon: A 32-Year Study Land degradation & development 28:1463-1472 doi:http://dx.doi.org/10.1002/ldr.2667

Silveira ML, João MBV, Liu K, Sollenberger LE, Follett RF (2013) Short-term effects of grazing intensity and nitrogen fertilization on soil organic carbon pools under perennial grass pastures in the southeastern USA Soil biology & biochemistry 58:42-49 doi:http://dx.doi.org/10.1016/j.soilbio.2012.11.003

Singh AK, Rai A, Kushwaha M, Chauhan PS, Pandey V, Singh N (2019) Tree growth rate regulate the influence of elevated CO2 on soil biochemical responses under tropical condition Journal of environmental management 231:1211-1221 doi:http://dx.doi.org/10.1016/j.jenvman.2018.11.025

Six J, Carpentier A, van Kessel C, Merckx R, Harris D, Horwath WR, Lüscher A (2001) Impact of elevated CO2 on soil organic matter dynamics as related to changes in aggregate turnover and residue quality Plant and Soil 234:27-36 doi:http://dx.doi.org/10.1023/A:1010504611456

Song B, Niu SL, Li LH, Zhang LX, Yu GR (2014) Soil carbon fractions in grasslands respond differently to various levels of nitrogen enrichments Plant and Soil 384:401-412 doi:10.1007/s11104-014-2219-1

Song B, Niu SL, Zhang Z, Yang HJ, Li LH, Wan SQ (2012) Light and Heavy Fractions of Soil Organic Matter in Response to Climate Warming and Increased Precipitation in a Temperate Steppe Plos One 7 doi:10.1371/journal.pone.0033217

Stewart CE, Follett RF, Pruessner EG, Varvel GE, Vogel KP, Mitchell RB (2016) N fertilizer and harvest impacts on bioenergy crop contributions to SOC Gcb Bioenergy 8:1201-1211

Stewart CE, Halvorson AD, Delgado JA (2017) Long-term N fertilization and conservation tillage practices conserve surface but not profile SOC stocks under semi-arid irrigated corn Soil & Tillage Research 171:9-18 doi:10.1016/j.still.2017.04.003

Stewart CE, Roosendaal DL, Manter DK, Delgado JA, Del Grosso S (2018) Interactions of stover and nitrogen management on soil microbial community and labile carbon under irrigated no-till corn Soil Science Society of America Journal 82:323-331

Swanston C, Homann PS, Caldwell BA, Myrold DD, Ganio L, Sollins P (2004) Long-term effects of elevated nitrogen on forest soil organic matter stability Biogeochemistry 70:229-252 doi:http://dx.doi.org/10.1023/B:BIOG.0000049341.37579.86

Thaysen EM, Reinsch S, Larsen KS, Ambus P (2017) Decrease in heathland soil labile organic carbon under future atmospheric and climatic conditions Biogeochemistry 133:17-36 doi:10.1007/s10533-017-0303-3

Tian J, Lu SH, Fan MS, Li XL, Kuzyakov Y (2013) Integrated management systems and N fertilization: effect on soil organic matter in rice-rapeseed rotation Plant and Soil 372:53-63 doi:10.1007/s11104-013-1715-z

Van Groenigen KJ, Harris D, Horwath WR, Hartwig UA, Van Kessel C (2002) Linking sequestration of C-13 and N-15 in aggregates in a pasture soil following 8 years of elevated atmospheric CO2 Global Change Biology 8:1094-1108 doi:10.1046/j.1365-2486.2002.00527.x

Volk M, Bassin S, Lehmann MF, Johnson MG, Andersen CP (2018) C-13 isotopic signature and C concentration of soil density fractions illustrate reduced C allocation to subalpine grassland soil under high atmospheric N deposition Soil Biology & Biochemistry 125:178-184 doi:10.1016/j.soilbio.2018.07.014

Wang RZ et al. (2019a) Response of soil carbon to nitrogen and water addition differs between labile and recalcitrant fractions: Evidence from multi-year data and different soil depths in a semi-arid steppe Catena 172:857-865 doi:10.1016/j.catena.2018.08.034

Wang X, Jelinski NA, Toner B, Yoo K (2019b) Long-term agricultural management and erosion change soil organic matter chemistry and association with minerals Science of the Total Environment 648:1500-1510 doi:10.1016/j.scitotenv.2018.08.110

Xie ZB, Cadisch G, Edwards G, Baggs EM, Blum H (2005) Carbon dynamics in a temperate grassland soil after 9 years exposure to elevated CO2 (Swiss FACE) Soil Biology & Biochemistry 37:1387-1395 doi:10.1016/j.soilbio.2004.12.010

Xu Q, Tang C, Jin J, Armstrong R, Wang X (2019) Susceptibility of soil organic carbon to priming after long-term CO2 fumigation is mediated by soil texture Science of the total environment 657:1112-1120 doi:http://dx.doi.org/10.1016/j.scitotenv.2018.11.437

Yang K, Zhu JJ, Gu JC, Xu S, Yu LZ, Wang ZQ (2018) Effects of continuous nitrogen addition on microbial properties and soil organic matter in a Larix gmelinii plantation in China Journal of Forestry Research 29:85-92 doi:10.1007/s11676-017-0430-7

Yanni SF, Janzen HH, Gregorich EG, Ellert BH, Larney FJ, Olson BM, Zvomuya F (2016) Organic Carbon Convergence in Diverse Soils toward Steady State: A 21-Year Field Bioassay Soil Science Society of America Journal 80:1653-1662 doi:10.2136/sssaj2016.07.0214

Zak DR, Freedman ZB, Upchurch RA, Steffens M, Kogel-Knabner I (2017) Anthropogenic N deposition increases soil organic matteraccumulation without altering its biochemical composition Global Change Biology 23:933-944 doi:10.1111/gcb.13480

Zhang CH, Tang GY, Sun YY (2019) Asymmetric and Symmetric Warming Induced Stability of Organic Carbon in a Calcareous Soil Soil Science Society of America Journal 83:1200-1208 doi:10.2136/sssaj2018.11.0444

Zhong YQW, Yan WM, Shangguan ZP (2015) Soil carbon and nitrogen fractions in the soil profile and their response to long-term nitrogen fertilization in a wheat field Catena 135:38-46 doi:10.1016/j.catena.2015.06.018

People and Organizations

Publishers:
Organization:Environmental Data Initiative
Email Address:
info@environmentaldatainitiative.org
Web Address:
https://environmentaldatainitiative.org
Creators:
Individual: Katherine S Rocci
Organization:Colorado State University
Email Address:
Katie.rocci@colostate.edu
Id:https://orcid.org/0000-0003-4235-6833
Individual: Jocelyn M Lavallee
Organization:Colorado State University
Email Address:
jocelyn.lavallee@colostate.edu
Id:https://orcid.org/0000-0002-3028-7087
Individual: Catherine E Stewart
Organization:United States Department of Agriculture – Agricultural Research service
Email Address:
catherine.stewart@usda.gov
Id:https://orcid.org/0000-0003-1216-0450
Individual: M Francesca Cotrufo
Organization:Colorado State University
Email Address:
francesca.cotrufo@colostate.edu
Id:https://orcid.org/0000-0002-6191-8953
Contacts:
Individual: Katherine S Rocci
Organization:Colorado State University
Email Address:
Katie.rocci@colostate.edu
Id:https://orcid.org/0000-0003-4235-6833
Individual: M Francesca Cotrufo
Organization:Colorado State University
Email Address:
francesca.cotrufo@colostate.edu
Id:https://orcid.org/0000-0002-6191-8953

Temporal, Geographic and Taxonomic Coverage

Temporal, Geographic and/or Taxonomic information that applies to all data in this dataset:

Time Period
Begin:
1994
End:
2020
Sampling Site: 
Description:Fang et al. 2014
Site Coordinates:
Longitude (degree): 101.32Latitude (degree): 37.62
Sampling Site: 
Description:Malhi and Lemke 2007
Site Coordinates:
Longitude (degree): -104.333Latitude (degree): 52.867
Sampling Site: 
Description:Volk et al 2018
Site Coordinates:
Longitude (degree): 9.652Latitude (degree): 46.530917
Sampling Site: 
Description:Wang et al 2019
Site Coordinates:
Longitude (degree): 116.2997Latitude (degree): 42.0408
Sampling Site: 
Description:Song et al 2014
Site Coordinates:
Longitude (degree): 116.283Latitude (degree): 42.033
Sampling Site: 
Description:Yang et al 2018
Site Coordinates:
Longitude (degree): 127.5333Latitude (degree): 45.3833
Sampling Site: 
Description:Cheng et al 2018
Site Coordinates:
Longitude (degree): 127.63Latitude (degree): 41.7
Sampling Site: 
Description:Rodriguez 2014
Site Coordinates:
Longitude (degree): -74.25Latitude (degree): 42.117
Sampling Site: 
Description:Parker et al 2002
Site Coordinates:
Longitude (degree): -68.1Latitude (degree): 44.867
Sampling Site: 
Description:Yanni et al 2016
Site Coordinates:
Longitude (degree): -112.83Latitude (degree): 49.7
Sampling Site: 
Description:Shahbaz et al 2017
Site Coordinates:
Longitude (degree): 9.217931Latitude (degree): 48.193847
Sampling Site: 
Description:van Groenigen et al 2002
Site Coordinates:
Longitude (degree): 8.67Latitude (degree): 47.43
Sampling Site: 
Description:Xie et al 2005
Site Coordinates:
Longitude (degree): 8.67Latitude (degree): 47.43
Sampling Site: 
Description:Liu et al 2013
Site Coordinates:
Longitude (degree): 107.5Latitude (degree): 35.267
Sampling Site: 
Description:Jantalia and Halvorson 2011
Site Coordinates:
Longitude (degree): -105Latitude (degree): 40.65
Sampling Site: 
Description:Zhong 2015
Site Coordinates:
Longitude (degree): 108.0686Latitude (degree): 34.2989
Sampling Site: 
Description:Haile-Mariam 2000
Site Coordinates:
Longitude (degree): -120.73Latitude (degree): 38.73
Sampling Site: 
Description:Li et al 2019
Site Coordinates:
Longitude (degree): 114.567Latitude (degree): 35.017
Sampling Site: 
Description:Cui et al 2014
Site Coordinates:
Longitude (degree): -101.78Latitude (degree): 33.75
Sampling Site: 
Description:Ma et al 2009
Site Coordinates:
Longitude (degree): 120.5Latitude (degree): 31.583
Sampling Site: 
Description:Chen et al 2018
Site Coordinates:
Longitude (degree): 103.23Latitude (degree): 29.7
Sampling Site: 
Description:Coulter et al 2009
Site Coordinates:
Longitude (degree): -88.75Latitude (degree): 41.92
Sampling Site: 
Description:Moinet et al 2016
Site Coordinates:
Longitude (degree): 172.2Latitude (degree): -43.4
Sampling Site: 
Description:Tian et al 2013
Site Coordinates:
Longitude (degree): 104.6Latitude (degree): 30.417
Sampling Site: 
Description:Ferreira 2018
Site Coordinates:
Longitude (degree): -54.52Latitude (degree): -30.43
Sampling Site: 
Description:Dou et al 2006
Site Coordinates:
Longitude (degree): -94.43Latitude (degree): 30.53
Sampling Site: 
Description:Mujuru et al 2016
Site Coordinates:
Longitude (degree): 31.808333Latitude (degree): -17.653611
Sampling Site: 
Description:Cusack et al 2011
Site Coordinates:
Longitude (degree): -65.8Latitude (degree): 18.3
Sampling Site: 
Description:Chen et al 2012
Site Coordinates:
Longitude (degree): 112.17Latitude (degree): 23.17
Sampling Site: 
Description:Purakayastha et al 2008
Site Coordinates:
Longitude (degree): 77.167Latitude (degree): 28.633
Sampling Site: 
Description:Oliveira et al 2018
Site Coordinates:
Longitude (degree): -39.311111Latitude (degree): -16.701111
Sampling Site: 
Description:Borges et al. 2019
Site Coordinates:
Longitude (degree): -48.255Latitude (degree): -21.256111
Sampling Site: 
Description:Finn et al 2016
Site Coordinates:
Longitude (degree): 148.88844Latitude (degree): -26.89726
Sampling Site: 
Description:Bremer et al 1994
Site Coordinates:
Longitude (degree): -112.762778Latitude (degree): 49.700278
Sampling Site: 
Description:Bremer et al 2008
Site Coordinates:
Longitude (degree): -112.762778Latitude (degree): 49.700278
Sampling Site: 
Description:Frasier 2016
Site Coordinates:
Longitude (degree): -63.98Latitude (degree): -36.611
Sampling Site: 
Description:Liang et al 2014
Site Coordinates:
Longitude (degree): 123.4Latitude (degree): 41.517
Sampling Site: 
Description:Liebig et al 2002
Site Coordinates:
Longitude (degree): -96.42Latitude (degree): 41.17
Sampling Site: 
Description:Maillard et al 2015
Site Coordinates:
Longitude (degree): -121.75Latitude (degree): 49.2833
Sampling Site: 
Description:Malhi et al 2011
Site Coordinates:
Longitude (degree): -114.467Latitude (degree): 53.117
Sampling Site: 
Description:Malhi et al 2005
Site Coordinates:
Longitude (degree): -114.05Latitude (degree): 50.5
Sampling Site: 
Description:Silveira et al 2013
Site Coordinates:
Longitude (degree): -82.2667Latitude (degree): 29.7167
Sampling Site: 
Description:Swanston 2004
Site Coordinates:
Longitude (degree): -122.52Latitude (degree): 45
Sampling Site: 
Description:Stewart et al 2016
Site Coordinates:
Longitude (degree): -96.4Latitude (degree): 41.151
Sampling Site: 
Description:Stewart et al 2017
Site Coordinates:
Longitude (degree): -104.9992Latitude (degree): 40.6517
Sampling Site: 
Description:Stewart et al 2018
Site Coordinates:
Longitude (degree): -104.9992Latitude (degree): 40.6517
Sampling Site: 
Description:Rovira et al 2019
Site Coordinates:
Longitude (degree): -122.917Latitude (degree): 36.65
Sampling Site: 
Description:Xu et al 2019
Site Coordinates:
Longitude (degree): 142.11389Latitude (degree): -36.74917
Sampling Site: 
Description:Pendall et al 2011
Site Coordinates:
Longitude (degree): 147.27Latitude (degree): -42.7
Sampling Site: 
Description:Dorodnikov et al 2011
Site Coordinates:
Longitude (degree): 48.7Latitude (degree): 9.183
Sampling Site: 
Description:Singh et al 2019
Site Coordinates:
Longitude (degree): 26.917Latitude (degree): 80.983
Sampling Site: 
Description:Hoosbeek et al. 2009
Site Coordinates:
Longitude (degree): 12.3575Latitude (degree): 42.6178
Sampling Site: 
Description:Jastrow et al 2000
Site Coordinates:
Longitude (degree): -96.583Latitude (degree): 39.2
Sampling Site: 
Description:Allard et al 2005
Site Coordinates:
Longitude (degree): 175.27Latitude (degree): -40.23
Sampling Site: 
Description:Black et al 2017
Site Coordinates:
Longitude (degree): -88.38Latitude (degree): 40.07
Sampling Site: 
Description:Six et al 2001
Site Coordinates:
Longitude (degree): 8.67Latitude (degree): 47.43
Sampling Site: 
Description:Bock et al 2007
Site Coordinates:
Longitude (degree): 8.67Latitude (degree): 47.43
Sampling Site: 
Description:Garten et al 2009
Site Coordinates:
Longitude (degree): -84.3394Latitude (degree): 35.9033
Sampling Site: 
Description:Iversen 2012
Site Coordinates:
Longitude (degree): -84.33Latitude (degree): 35.9
Sampling Site: 
Description:Hofmockel et al 2011
Site Coordinates:
Longitude (degree): -89.625Latitude (degree): 49.675
Sampling Site: 
Description:Liu et al 2018
Site Coordinates:
Longitude (degree): 103.883Latitude (degree): 31.683
Sampling Site: 
Description:Niklaus et al 2001
Site Coordinates:
Longitude (degree): 7.567Latitude (degree): 47.55
Sampling Site: 
Description:Peralta et al 2008
Site Coordinates:
Longitude (degree): -88.20094Latitude (degree): 40.05592
Sampling Site: 
Description:Thaysen 2017
Site Coordinates:
Longitude (degree): 11.967Latitude (degree): 55.883
Sampling Site: 
Description:Link et al 2003
Site Coordinates:
Longitude (degree): -119.61Latitude (degree): 46.41
Sampling Site: 
Description:Song et al. 2012
Site Coordinates:
Longitude (degree): 116.183Latitude (degree): 42.333
Sampling Site: 
Description:He et al. 2012
Site Coordinates:
Longitude (degree): 116.183Latitude (degree): 42.333
Sampling Site: 
Description:Guan et al 2018
Site Coordinates:
Longitude (degree): 91.083Latitude (degree): 30.85
Sampling Site: 
Description:Cheng et al 2011
Site Coordinates:
Longitude (degree): -97.5206Latitude (degree): 34.9817
Sampling Site: 
Description:Zhang et al 2019
Site Coordinates:
Longitude (degree): 103.367Latitude (degree): 24.667
Sampling Site: 
Description:Poeplau et al 2017
Site Coordinates:
Longitude (degree): -21.18583Latitude (degree): 64.00028
Sampling Site: 
Description:Schnecker et al 2016
Site Coordinates:
Longitude (degree): 11.63917Latitude (degree): 47.58056
Sampling Site: 
Description:Canarini et al 2016
Site Coordinates:
Longitude (degree): 150.6606Latitude (degree): -33.9308
Sampling Site: 
Description:Canarini et al 2018
Site Coordinates:
Longitude (degree): 150.6606Latitude (degree): -33.9308
Sampling Site: 
Description:Henry et al 2005
Site Coordinates:
Longitude (degree): -122.3667Latitude (degree): 37.6667
Sampling Site: 
Description:Puissant et al 2017
Site Coordinates:
Longitude (degree): 6.383Latitude (degree): 46.9

Project

Parent Project Information:

Title:Graduate Research Fellowship Program
Personnel:
Individual: Katherine S Rocci
Organization:Colorado State University
Email Address:
Katie.rocci@colostate.edu
Id:https://orcid.org/0000-0003-4235-6833
Role:Principal Investigator
Funding: National Science Foundation 1650114

Maintenance

Maintenance:
Description:completed
Frequency:
Other Metadata

Additional Metadata

additionalMetadata
        |___text '\n    '
        |___element 'metadata'
        |     |___text '\n      '
        |     |___element 'unitList'
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'months'
        |     |     |     |  \___attribute 'multiplierToSI' = ''
        |     |     |     |  \___attribute 'name' = 'months'
        |     |     |     |  \___attribute 'parentSI' = ''
        |     |     |     |  \___attribute 'unitType' = ''
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'percent'
        |     |     |     |  \___attribute 'multiplierToSI' = ''
        |     |     |     |  \___attribute 'name' = 'percent'
        |     |     |     |  \___attribute 'parentSI' = ''
        |     |     |     |  \___attribute 'unitType' = ''
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'gramPerKilogram'
        |     |     |     |  \___attribute 'multiplierToSI' = ''
        |     |     |     |  \___attribute 'name' = 'gramPerKilogram'
        |     |     |     |  \___attribute 'parentSI' = ''
        |     |     |     |  \___attribute 'unitType' = ''
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'partsPerMillion'
        |     |     |     |  \___attribute 'multiplierToSI' = ''
        |     |     |     |  \___attribute 'name' = 'partsPerMillion'
        |     |     |     |  \___attribute 'parentSI' = ''
        |     |     |     |  \___attribute 'unitType' = ''
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |___text '\n        '
        |     |     |___text '\n      '
        |     |___text '\n    '
        |___text '\n  '

EDI is a collaboration between the University of New Mexico and the University of Wisconsin – Madison, Center for Limnology:

UNM logo UW-M logo