Description: | REFERENCES:
[1] Chow, A. T., Tanji, K. K., Gao, S., & Dahlgren, R. A. (2006). Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils. Soil Biology and Biochemistry, 38(3), 477–488. https://doi.org/10.1016/j.soilbio.2005.06.005
[2] Christ, M. J., & David, M. B. (1996). Temperature and moisture effects on the production of dissolved organic carbon in a Spodosol. Soil Biology and Biochemistry, 28(9), 1191–1199. https://doi.org/10.1016/0038-0717(96)00120-4
[3] Coble, P. G. (2007). Marine optical biogeochemistry: The chemistry of ocean color. Chemical Reviews, 107(2), 402–418. https://doi.org/10.1021/cr050350
[4] Cory, R. M., & McKnight, D. M. (2005). Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environmental Science and Technology, 39(21), 8142–8149. https://doi.org/10.1021/es0506962
[5] Cory, R. M., Miller, M. P., Mcknight, D. M., Guerard, J. J., & Miller, P. L. (2010). Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnology and Oceanography: Methods, 8(2), 67–78. https://doi.org/10.4319/lom.2010.8.67
[6] Day, P. R. (1953). Experimental confirmation of hydrometer theory. Soil Science, 75(3), 181–186.
[7] Duston, S. A. (2020). Capturing and Characterizing Soluble Organic Matter Dynamics in Soil Formation Processes. Virginia Tech.
[8] Fellman, J.B., E. Hood, and R.G.M. Spencer. 2010. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnology and Oceanography 55, 2452-2462. https://doi.org/10.4319/lo.2010.55.6.2452
[9] Gabor, R. S., Burns, M. A., Lee, R. H., Elg, J. B., Kemper, C. J., Barnard, H. R., & McKnight, D. M. (2015). Influence of leaching solution and catchment location on the fluorescence of water-soluble organic matter. Environmental Science and Technology, 49(7), 4425–4432. https://doi.org/10.1021/es504881t
[10] Helms, R. J., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., & Mopper, K. (2009). Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter (Limnology and Oceanography 53 955-969). Limnology and Oceanography, 54(3), 1023. https://doi.org/10.4319/lo.2009.54.3.1023
[11] Hounshell, Alexandria G., Thai, Rose H., Peeler, Kelly A., Scott, Durelle T., Carey, C. C. (n.d.). Time series of optical measurements (absorbance, fluorescence) for Beaverdam and Falling Creek Reservoir in Southwestern Virginia, USA 2019-2020 ver 1. Environmental Data Initiative. https://doi.org/https://doi.org/10.6073/pasta/d1062b14ed1df86507414afe8d45dc75
[12] Huguet, A., L. Vacher, S. Relexans, S. Saubusse, J.M. Froidefond, and E. Parlanti. 2009. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry 40, 706-719. https://doi.org/10.1016/j.orggeochem.2009.03.002
[13] Jones, D. L., & Willett, V. B. (2006). Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry, 38(5), 991–999. https://doi.org/10.1016/j.soilbio.2005.08.012
[14] Kottkamp, A., Jones, C. N., Palmer, M. A., & Tully, K. L. (2021). Physical protection in aggregates and organo-mineral associations contribute to carbon stabilization at the transition zone of seasonally saturated wetlands. https://doi.org/10.21203/rs.3.rs-358092/v2
[15] Maietta, C. E., Hondula, K. L., Jones, C. N., & Palmer, M. A. (2020). Hydrological Conditions Influence Soil and Methane-Cycling Microbial Populations in Seasonally Saturated Wetlands. Frontiers in Environmental Science, 8(November), 1–13. https://doi.org/10.3389/fenvs.2020.593942
[16] McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., & Andersen, D. T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46(1), 38–48. https://doi.org/10.4319/lo.2001.46.1.0038
[17] Miller, M. P., McKnight, D. M., Cory, R. M., Williams, M. W., & Runkel, R. L. (2006). Hyporheic exchange and fulvic acid redox reactions in an alpine stream/wetland ecosystem, Colorado front range. Environmental Science and Technology, 40(19), 5943–5949. https://doi.org/10.1021/es060635j
[18] Mladenov, N., Huntsman-Mapila, P., Wolski, P., Masamba, W. R. L., & McKnight, D. M. (2008). Dissolved organic matter accumulation, reactivity, and redox state in ground water of a recharge wetland. Wetlands, 28(3), 747–759.
[19] Murphy, K. R., Stedmon, C. A., Graeber, D., & Bro, R. (2013). Fluorescence spectroscopy and multi-way techniques. PARAFAC. Analytical Methods, 5(23), 6557–6566. https://doi.org/10.1039/c3ay41160e
[20] Ohno, T. (2002). Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environmental Science and Technology, 36(4), 742–746. https://doi.org/10.1021/es0155276
[21] Rennert, T., Gockel, K. F., & Mansfeldt, T. (2007). Extraction of water-soluble organic matter from mineral horizons of forest soils. Journal of Plant Nutrition and Soil Science, 170(4), 514–521. https://doi.org/10.1002/jpln.200625099
[22] Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., & Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science and Technology, 37(20), 4702–4708. https://doi.org/10.1021/es030360x
[23] Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., & Saccomandi, F. (1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38(1), 45–50. https://doi.org/10.1016/S0045-6535(98)00166-0 |