Data Package Metadata   View Summary

Florida Bay Seagrass Canopy Temperature Data, Everglades National Park (FCE LTER), South Florida, USA, September 2000 - ongoing

General Information
Data Package:
Local Identifier:knb-lter-fce.1133.10
Title:Florida Bay Seagrass Canopy Temperature Data, Everglades National Park (FCE LTER), South Florida, USA, September 2000 - ongoing
Alternate Identifier:PHY_Fourqurean_002
Alternate Identifier:DOI PLACE HOLDER
Abstract:

Point measurements of hourly temperature readings at the canopy height of a seagrass bed collected during visits to TS/Ph 7a, TS/Ph8, TS/Ph9, TS/Ph10 and TS/Ph11. Graphic representation of seagrass status and trends monitoring data and other related information can be located at http://serc.fiu.edu/seagrass/!CDreport/DataHome.htm

Publication Date:2023-09-15
For more information:
Visit: https://fce-lter.fiu.edu/perl/public_data_download.pl?datasetid=PHY_Fourqurean_002.csv
Visit: DOI PLACE HOLDER

Time Period
Begin:
2000-12-20
End:
2022-12-08

People and Organizations
Contact:Fourqurean, Jim (Southeast Environmental Research Center, Principal Investigator) [  email ]
Contact:Information Manager (Florida Coastal Everglades LTER) [  email ]
Creator:Fourqurean, James (Florida Coastal Everglades LTER Program, Principal Investigator)
Associate:Escorcia, Susie  (Southeast Environmental Research Center, Technical Staff)
Associate:Fourqurean, Jim (Southeast Environmental Research Center, Principal Investigator)
Associate:Peterson, Brad  (Department of Biological Sciences, Project Collaborator)
Associate:Frankovich, Tom (Florida Bay Interagency Science Center, Ph.D. Student)
Associate:Cunniff, Kevin (Department of Biological Sciences, Masters Student)
Associate:Byron, Dottie (Department of Biological Sciences, Masters Student)
Associate:Herbert, Darrell (Department of Biological Sciences, post doc)
Associate:Bernard, Rebecca (Department of Biological Sciences, masters student)
Associate:Roden, Ana (Institute of Environment, Lab Manager)
Associate:Krause, Johannes (Institute of Environment, Postdoc)

Data Entities
Data Table Name:
PHY_Fourqurean_002.csv
Description:
Florida Bay Seagrass Canopy Temperature Data, Everglades National Park, South Florida
Detailed Metadata

Data Entities


Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/knb-lter-fce/1133/10/da254454f44f18626928c279601da776
Name:PHY_Fourqurean_002.csv
Description:Florida Bay Seagrass Canopy Temperature Data, Everglades National Park, South Florida
Number of Records:744043
Number of Columns:6

Table Structure
Object Name:PHY_Fourqurean_002.csv
Size:40 MB
Authentication:1df58184523066d78297958e7a3ede0a Calculated By MD5
Character Encoding:UTF-8
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 sitenamealiasdatetimedecimal yearTemperature
Column Name:SITENAME  
SITEALIAS  
Date  
Time  
DecimalYear  
Temperature  
Definition:Name of LTER siteAlias of LTER siteDate of collectionSampling time in UTCCalendar year + fraction of calendar yearWater Temperature
External Measurement Definition, Link: containsMeasurementsOfType estuary water temperature
Storage Type:            
Measurement Type:ordinalordinaldateTimedateTimeordinalinterval
Measurement Values Domain:
DefinitionName of LTER site
DefinitionAlias of LTER site
FormatYYYY-MM-DD
Precision1
Formathh:mmZ
Precision1
DefinitionCalendar year + fraction of calendar year
Unitcelsius
Precision0.1
Typereal
Missing Value Code:          
Code-9999.0
ExplValue will never be recorded
Accuracy Report:            
Accuracy Assessment:            
Coverage:            
Methods:            

Data Package Usage Rights

This information is released under the Creative Commons license - Attribution - CC BY (https://creativecommons.org/licenses/by/4.0/). The consumer of these data ("Data User" herein) is required to cite it appropriately in any publication that results from its use. The Data User should realize that these data may be actively used by others for ongoing research and that coordination may be necessary to prevent duplicate publication. The Data User is urged to contact the authors of these data if any questions about methodology or results occur. Where appropriate, the Data User is encouraged to consider collaboration or co-authorship with the authors. The Data User should realize that misinterpretation of data may occur if used out of context of the original study. While substantial efforts are made to ensure the accuracy of data and associated documentation, complete accuracy of data sets cannot be guaranteed. All data are made available "as is." The Data User should be aware, however, that data are updated periodically and it is the responsibility of the Data User to check for new versions of the data. The data authors and the repository where these data were obtained shall not be liable for damages resulting from any use or misinterpretation of the data. Thank you.

External Annotations

With link(s) out to external vocabularies
Dataset isAbout sea grass bed

Keywords

By Thesaurus:
LTER Controlled Vocabularytemperature, seagrass, estuaries, inorganic nutrients
FCE Keyword ListFCE, LTER, FCE LTER, Florida Coastal Everglades LTER, ecological research, long-term monitoring, Florida Bay, Everglades National Park, canopies, freshwater

Methods and Protocols

These methods, instrumentation and/or protocols apply to all data in this dataset:

Methods and protocols used in the collection of this data package
Description:

Seagrass Canopy Temperature-Prior to deployment in the field, loggers are programmed to launch at a specific date and time. Additionally, loggers are programmed to record water temperature once every hour. Underwater, loggers are attached with plastic wire ties to a stake of rebar marking the site at the height of the seagrass canopy. Two pieces of plastic saran wrap (approximately 20 cm2) are wrapped around the logger and are secured with rubber bands in order to help prevent fouling by marine organisms. Upon collection, loggers are cleaned (if necessary) and rinsed in freshwater. Data is later downloaded with the use of BoxCar Pro 4.0 software (Onset Corporation). Raw data points are then exported into a spreadsheet for the purpose of maintaining a continuous canopy temperature profile. Time is measured in UTC.

Instrument(s):Seagrass canopy water temperature is obtained through the use of the Onset Corporation StowAway Tidbit Temp Logger (model TB132-05+37).
Sampling Area and Study Extent
Sampling Description:

Seagrass Canopy Temperature-Prior to deployment in the field, loggers are programmed to launch at a specific date and time. Additionally, loggers are programmed to record water temperature once every hour. Underwater, loggers are attached with plastic wire ties to a stake of rebar marking the site at the height of the seagrass canopy. Two pieces of plastic saran wrap (approximately 20 cm2) are wrapped around the logger and are secured with rubber bands in order to help prevent fouling by marine organisms. Upon collection, loggers are cleaned (if necessary) and rinsed in freshwater. Data is later downloaded with the use of BoxCar Pro 4.0 software (Onset Corporation). Raw data points are then exported into a spreadsheet for the purpose of maintaining a continuous canopy temperature profile.

Sampling Area And Frequency:

The Study Extent of this dataset includes the FCE Florida Bay research sites within Everglades National Park, South Florida

Quality Control
Quality Control Step 1: 
Description:

All data is checked against field logs to eliminate overlapping entries.

People and Organizations

Publishers:
Organization:Environmental Data Initiative
Email Address:
info@edirepository.org
Web Address:
https://edirepository.org
Id:https://ror.org/0330j0z60
Creators:
Individual:Dr. James Fourqurean
Organization:Florida Coastal Everglades LTER Program
Position:Principal Investigator
Address:
Florida International University,
University Park,
OE 148,
Miami, FL 33199 USA
Phone:
305-348-4084 (voice)
Phone:
305-348-4096 (fax)
Email Address:
fourqure@fiu.edu
Web Address:
http://seagrass.fiu.edu
Id:https://orcid.org/0000-0002-0811-8500
Contacts:
Individual: Jim Fourqurean
Organization:Southeast Environmental Research Center
Position:Principal Investigator
Address:
Florida International University,
University Park,
OE 148,
Miami, FL 33199 USA
Phone:
305-348-4084 (voice)
Phone:
305-348-4096 (fax)
Email Address:
fourqure@fiu.edu
Web Address:
http://seagrass.fiu.edu
Organization:Florida Coastal Everglades LTER
Position:Information Manager
Address:
Florida International University,
11200 SW 8th Street,
OE 148,
Miami, FL 33199 USA
Email Address:
fcelter@fiu.edu
Web Address:
http://fcelter.fiu.edu
Associated Parties:
Individual: Susie Escorcia
Organization:Southeast Environmental Research Center
Address:
Florida International University,
University Park,
OE 267,
Miami, FL 33199 USA
Phone:
305-348-1556 (voice)
Phone:
305-348-4096 (fax)
Email Address:
escorcia@fiu.edu
Web Address:
http://seagrass.fiu.edu
Role:Technical Staff
Individual: Jim Fourqurean
Organization:Southeast Environmental Research Center
Address:
Florida International University,
University Park,
OE 237,
Miami, FL 33199 USA
Phone:
305-348-4084 (voice)
Phone:
305-348-4096 (fax)
Email Address:
fourqure@fiu.edu
Web Address:
http://seagrass.fiu.edu
Role:Principal Investigator
Individual: Brad Peterson
Organization:Department of Biological Sciences
Address:
Florida International University,
University Park,
OE 167,
Miami, FL 33199 USA
Phone:
305-348-6253 (voice)
Phone:
305-348-1986 (fax)
Email Address:
petersob@fiu.edu
Web Address:
http://www.fiu.edu/~petersob/
Role:Project Collaborator
Individual: Tom Frankovich
Organization:Florida Bay Interagency Science Center
Address:
98630 Oversears Highway,
Key Largo, FL 33037 USA
Phone:
(305) 852-2668 (voice)
Email Address:
frankovich@virginia.edu
Role:Ph.D. Student
Individual: Kevin Cunniff
Organization:Department of Biological Sciences
Address:
Florida International University,
University Park,
OE 167,
Miami, FL 33199 USA
Phone:
(305) 348-6997 (voice)
Email Address:
kcunni02@fiu.edu
Web Address:
http://seagrass.fiu.edu
Role:Masters Student
Individual: Dottie Byron
Organization:Department of Biological Sciences
Address:
Florida International University,
University Park,
OE 167,
Miami, FL 33199 USA
Phone:
(305) 348-6997 (voice)
Email Address:
dbyron01@fiu.edu
Web Address:
http://seagrass.fiu.edu
Role:Masters Student
Individual: Darrell Herbert
Organization:Department of Biological Sciences
Address:
Florida International University,
University Park,
OE 167,
Miami, FL 33199 USA
Phone:
(305) 348-6997 (voice)
Email Address:
herbertd@fiu.edu
Role:post doc
Individual: Rebecca Bernard
Organization:Department of Biological Sciences
Address:
Florida International University,
University Park,
OE 167,
Miami, FL 33199 USA
Phone:
(305) 348-6997 (voice)
Email Address:
bernardr@fiu.edu
Role:masters student
Individual: Ana Roden
Organization:Institute of Environment
Address:
Florida International University,
University Park,
OE 167,
Miami, FL 33199 USA
Phone:
(608) 445-2670 (voice)
Email Address:
aroden@fiu.edu
Web Address:
http://seagrass.fiu.edu
Role:Lab Manager
Individual: Johannes Krause
Organization:Institute of Environment
Address:
Florida International University,
University Park,
OE 167,
Miami, FL 33199 USA
Phone:
(608) 445-2670 (voice)
Email Address:
jkrause@fiu.edu
Web Address:
http://seagrass.fiu.edu
Role:Postdoc
Metadata Providers:
Organization:Florida Coastal Everglades LTER
Address:
Florida International University,
11200 SW 8th Street,
OE 148,
Miami, FL 33199 USA
Phone:
305-348-6054 (voice)
Email Address:
fcelter@fiu.edu
Web Address:
http://fcelter.fiu.edu
Id:https://ror.org/03davk141

Temporal, Geographic and Taxonomic Coverage

Temporal, Geographic and/or Taxonomic information that applies to all data in this dataset:

Time Period
Begin:
2000-12-20
End:
2022-12-08
Sampling Site: 
Description:FCE LTER Site TS/Ph9
Site Coordinates:
Longitude (degree): -80.490Latitude (degree): 25.177
Sampling Site: 
Description:FCE LTER Site TS/Ph10
Site Coordinates:
Longitude (degree): -80.681Latitude (degree): 25.025
Sampling Site: 
Description:FCE LTER Site TS/Ph11
Site Coordinates:
Longitude (degree): -80.938Latitude (degree): 24.913
Sampling Site: 
Description:FCE LTER Site TS/Ph7a
Site Coordinates:
Longitude (degree): -80.639Latitude (degree): 25.191
Sampling Site: 
Description:FCE LTER Site TS/Ph8
Site Coordinates:
Longitude (degree): -80.525Latitude (degree): 25.233

Project

Parent Project Information:

Title:Florida Coastal Everglades LTER: Coastal Oligotrophic Ecosystems Research-the Coastal Everglades
Personnel:
Individual: Daniel Childers
Organization:Florida Coastal Everglades LTER Program
Address:
Department of Biological Sciences,
Florida International University,
University Park,
OE 167,
Miami, FL 33199 USA
Phone:
305-348-3101 (voice)
Phone:
305-348-1986 (fax)
Email Address:
childers@fiu.edu
Role:Lead Principal Investigator
Individual: Joseph Boyer
Organization:Florida Coastal Everglades LTER Program
Address:
Southeast Environmental Research Center,
Florida International University,
University Park,
OE 148,
Miami, FL 33199 USA
Phone:
305-348-4076 (voice)
Phone:
305-348-4096 (fax)
Role:Principal Investigator
Individual: James Fourqurean
Organization:Florida Coastal Everglades LTER Program
Address:
Department of Biological Sciences,
Florida International University,
University Park,
OE 167,
Miami, FL 33199 USA
Phone:
305-348-4084 (voice)
Phone:
305-348-4096 (fax)
Role:Principal Investigator
Individual: Rudolf Jaffe
Organization:Florida Coastal Everglades LTER Program
Address:
Department of Chemistry,
Florida International University,
University Park,
CP 304,
Miami, FL 33199 USA
Phone:
305-348-2456 (voice)
Phone:
305-348-4096 (fax)
Role:Principal Investigator
Individual: Joel Trexler
Organization:Florida Coastal Everglades LTER Program
Address:
Department of Biological Sciences,
Florida International University,
University Park,
OE 167,
Miami, FL 33199 USA
Phone:
305-348-1966 (voice)
Phone:
305-348-1986 (fax)
Role:Principal Investigator
Abstract:

We are investigating how variability in regional climate, freshwater inputs, disturbance, and perturbations affect the coastal Everglades ecosystem. Our long term research program focuses on testing the following central idea and hypotheses: Regional processes mediated by water flow control population and ecosystem level dynamics at any location within the coastal Everglades landscape. This phenomenon is best exemplified in the dynamics of an estuarine oligohaline zone where fresh water draining phosphorus-limited Everglades marshes mixes with water from the more nitrogen-limited coastal ocean. Hypothesis 1: In nutrient-poor coastal systems, long-term changes in the quantity or quality of organic matter inputs will exert strong and direct controls on estuarine productivity, because inorganic nutrients are at such low levels. Hypothesis 2: Interannual and long-term changes in freshwater flow controls the magnitude of nutrients and organic matter inputs to the estuarine zone, while ecological processes in the freshwater marsh and coastal ocean control the quality and characteristics of those inputs. Hypothesis 3: Long-term changes in freshwater flow (primarily manifest through management and Everglades restoration) will interact with long-term changes in the climatic and disturbance (sea level rise, hurricanes, fires) regimes to modify ecological pattern and process across coastal landscapes.

Funding:

National Science Foundation under Grant # 9910514

Study Area:
Study Area Coverage:
Geographic Region:
Description:The FCE LTER Project Study area is located in South Florida, mostly in Everglades National Park. There are a total of 21 sampling sites located in two major regions: 1) Shark River Slough and 2) Taylor Slough/Panhandle.
Bounding Coordinates:
Northern:  25.761Southern:  24.913
Western:  -81.078Eastern:  -80.490

Time Period
Begin:
2000-05-01
End:
2006-04-30
Additional Award Information:
Funder:National Science Foundation
Funder ID:https://ror.org/021nxhr62
Number:9910514
Title:Florida Coastal Everglades LTER: Coastal Oligotrophic Ecosystems Research-the Coastal Everglades
URL:https://www.nsf.gov/awardsearch/showAward?AWD_ID=9910514
Related Project:
Title:FCE LTER II: Coastal Oligotrophic Ecosystems Research
Personnel:
Individual: Evelyn Gaiser
Organization:Florida Coastal Everglades LTER Program
Address:
Florida International University,
University Park,
OE 148,
Miami, FL 33199 USA
Phone:
305-348-6145 (voice)
Phone:
305-348-4096 (fax)
Email Address:
gaisere@fiu.edu
Role:Lead Principal Investigator
Individual: Mike Heithaus
Organization:Florida Coastal Everglades LTER Program
Address:
Department of Biological Sciences,
Marine Biology Program,
Florida International University,
Biscayne Bay Campus,
Miami, FL 33181 USA
Phone:
(305) 919-5234 (voice)
Phone:
(305) 919-4030 (fax)
Email Address:
heithaus@fiu.edu
Role:Principal Investigator
Individual: Rudolf Jaffe
Organization:Florida Coastal Everglades LTER Program
Address:
Department of Chemistry,
Florida International University,
University Park,
CP 304,
Miami, FL 33199 USA
Phone:
305-348-2456 (voice)
Phone:
305-348-4096 (fax)
Email Address:
jaffer@fiu.edu
Role:Principal Investigator
Individual: Rene Price
Organization:Florida Coastal Everglades LTER Program
Address:
Department of Earth Sciences,
Florida International University,
University Park,
PC 344,
11200 SW 8th Street,
Miami, FL 33199 USA
Phone:
305-348-3119 (voice)
Phone:
305-348-3877 (fax)
Email Address:
pricer@fiu.edu
Role:Principal Investigator
Abstract:

Our FCE I research focused on understanding how dissolved organic matter from upstream oligotrophic marshes interacts with a marine source of phosphorus (P), the limiting nutrient, to control estuarine productivity where these two influences meet-in the oligohaline ecotone. This dynamic is affected by the interaction of local ecological processes and landscape-scale drivers (hydrologic, climatological, and human). During FCE I, our ideas about how these "upside-down" estuaries (Childers et al. 2006) function has evolved, and we have modified our central theme to reflect this new understanding. Our focus in FCE II will be even more strongly on the oligohaline ecotone region of our experimental transects. For FCE II, our overarching theme is: In the coastal Everglades landscape, population and ecosystem-level dynamics are controlled by the relative importance of water source, water residence time, and local biotic processes. This phenomenon is best exemplified in the oligohaline ecotone, where these 3 factors interact most strongly and vary over many [temporal and spatial] scales.Hypothesis 1: Increasing inputs of fresh water will enhance oligotrophy in nutrient-poor coastal systems, as long as the inflowing water has low nutrient content; this dynamic will be most pronounced in the oligohaline ecotone. Hypothesis 2: An increase in freshwater inflow will increase the physical transport of detrital organic matter to the oligohaline ecotone, which will enhance estuarine productivity. The quality of these allochthonous detrital inputs will be controlled by upstream ecological processes. Hypothesis 3: Water residence time, groundwater inputs, and tidal energy interact with climatic and disturbance regimes to modify ecological pattern and process in oligotrophic estuaries; this dynamic will be most pronounced in the oligohaline ecotone. Childers, D.L., J.N. Boyer, S.E. Davis, C.J. Madden, D.T. Rudnick, and F.H. Sklar, 2006. Relating precipitation and water management to nutrient concentration patterns in the oligotrophic "upside down" estuaries of the Florida Everglades. Limnology and Oceanography, 51(1): 602-616.

Funding:

National Science Foundation under Grant # 9910514 and #0620409

Study Area:
Study Area Coverage:
Geographic Region:
Description:The FCE LTER Project Study area is located in South Florida, mostly in Everglades National Park. There are a total of 20 sampling sites located in two major regions: 1) Shark River Slough and 2) Taylor Slough/Panhandle.
Bounding Coordinates:
Northern:  25.761Southern:  24.913
Western:  -81.078Eastern:  -80.490

Time Period
Begin:
2006-12-01
End:
2012-12-01
Additional Award Information:
Funder:National Science Foundation
Funder ID:https://ror.org/021nxhr62
Number:620409
Title:FCE LTER II: Coastal Oligotrophic Ecosystems Research
URL:https://www.nsf.gov/awardsearch/showAward?AWD_ID=0620409
Related Project:
Title:FCE LTER III: Coastal Oligotrophic Ecosystems Research
Personnel:
Individual: Evelyn Gaiser
Organization:Florida Coastal Everglades LTER Program
Address:
Florida International University,
University Park,
OE 148,
Miami, FL 33199 USA
Phone:
305-348-6145 (voice)
Phone:
305-348-4096 (fax)
Email Address:
gaisere@fiu.edu
Role:Lead Principal Investigator
Individual: Mike Heithaus
Organization:Florida Coastal Everglades LTER Program
Address:
Department of Biological Sciences,
Marine Biology Program,
Florida International University,
Biscayne Bay Campus,
Miami, FL 33181 USA
Phone:
(305) 919-5234 (voice)
Phone:
(305) 919-4030 (fax)
Email Address:
heithaus@fiu.edu
Role:Principal Investigator
Individual: Rudolf Jaffe
Organization:Florida Coastal Everglades LTER Program
Address:
Department of Chemistry,
Florida International University,
University Park,
CP 304,
Miami, FL 33199 USA
Phone:
305-348-2456 (voice)
Phone:
305-348-4096 (fax)
Email Address:
jaffer@fiu.edu
Role:Principal Investigator
Individual: Rene Price
Organization:Florida Coastal Everglades LTER Program
Address:
Department of Earth Sciences,
Florida International University,
University Park,
PC 344,
11200 SW 8th Street,
Miami, FL 33199 USA
Phone:
305-348-3119 (voice)
Phone:
305-348-3877 (fax)
Email Address:
pricer@fiu.edu
Role:Principal Investigator
Individual: Laura Ogden
Organization:Florida Coastal Everglades LTER Program
Address:
Department of Global & Sociocultural Studies,
Florida International University,
University Park,
DM341C,
11200 SW 8th Street,
Miami, FL 33199 USA
Phone:
305-348-6663 (voice)
Phone:
305-348-3605 (fax)
Email Address:
Laura.Ogden@fiu.edu
Role:Principal Investigator
Abstract:

Coastal ecosystems are being modified at unprecedented rates through interacting pressures of global climate change and rapid human population growth, impacting natural coastal resources and the services they provide. Located at the base of the shallow-sloping Florida peninsula, the Everglades wilderness and 6 million human residents are exceptionally exposed to both pressures. Further, freshwater drainage has accelerated saltwater intrusion over land and into the porous limestone aquifer, resulting in coastal ecosystem transgression and seasonal residential freshwater shortages. The unprecedented landscape-scale Everglades restoration process is expected to reverse some of these trends. However, it is not clear how uncertainties about climate change prognoses and their impacts (e.g., sea level rise (SLR), changes in storm activity or severity, and climate drivers of freshwater availability) may influence human activities (e.g., population growth, resource use, land-use change), and how their interaction will affect the restoration process that is already steeped in conflict. The Florida Coastal Everglades Long-Term Ecological Research (FCE LTER) program is dedicated to long-term coupled biophysical and cultural studies that expose and unravel complex feedbacks that generate distinctive patterns and processes in vulnerable coastal ecosystems. The overarching theme of FCE research is: In the coastal Everglades, climate change and resource management decisions interact to influence freshwater availability, ecosystem dynamics, and the value and utilization of ecosystem services by people. Because they are highly sensitive to the balance of freshwater and marine influences, coastal wetlands of the Florida Everglades provide an ideal system to examine how socio-ecological systems respond to and mitigate the effects of climate change and freshwater allocation decisions. The trans-disciplinary science conducted by the large FCE research team is revealing how estuary hydrodynamics and biogeochemistry may tilt on a fulcrum defined by the magnitude by which coastal pressures (SRL, storms) are mitigated by freshwater flows. We employ a socio-ecological framework to address how climate change interacts with political decisions to determine the sustainability of interconnected human-natural systems. In FCE I, we discovered how coastal nutrient supplies create an unusual “upside-down” productivity gradient in karstic estuaries. FCE II research used growing long-term datasets to reveal the sensitivity of this gradient to changes in hydrodynamics, nutrient availability, and salinity. In FCE III, we will use South Florida as an exemplary system for understanding how and why socio-ecological systems resist, adapt to, or mitigate the effects of climate change on ecosystem sustainability. We will examine how decisions about freshwater delivery to the Everglades influence -and are influenced by - the impact of SLR in this especially vulnerable landscape. Biophysical studies will focus on how this balance of fresh and marine sources influences biogeochemical cycling, primary production, organic matter dynamics, and trophic dynamics, to drive carbon gains and losses. We expand our spatio-temporal domain by employing powerful long-term datasets and experiments to determine legacies of past interactions, and to constrain models that will help guide a sustainable future for the FCE.

Funding:

National Science Foundation under Grant # 9910514, #0620409 and DEB-1237517

Study Area:
Study Area Coverage:
Geographic Region:
Description:The FCE LTER Project Study area is located in South Florida, mostly in Everglades National Park. There are a total of 20 sampling sites located in two major regions: 1) Shark River Slough and 2) Taylor Slough/Panhandle.
Bounding Coordinates:
Northern:  25.761Southern:  24.913
Western:  -81.078Eastern:  -80.490

Time Period
Begin:
2012-12-01
End:
2018-12-01
Additional Award Information:
Funder:National Science Foundation
Funder ID:https://ror.org/021nxhr62
Number:1237517
Title:FCE LTER III: Coastal Oligotrophic Ecosystems Research
URL:https://www.nsf.gov/awardsearch/showAward?AWD_ID=1237517
Related Project:
Title:LTER: Drivers of Abrupt Change in the Florida Coastal Everglades
Personnel:
Individual: Evelyn Gaiser
Organization:Florida Coastal Everglades LTER Program
Address:
Florida International University,
University Park,
OE 148,
Miami, FL 33199 USA
Phone:
305-348-6145 (voice)
Phone:
305-348-4096 (fax)
Email Address:
gaisere@fiu.edu
Role:Lead Principal Investigator
Individual: James Fourqurean
Organization:Florida Coastal Everglades LTER Program
Address:
Department of Biological Sciences,
INWE,
SERC,
Florida International University,
Email Address:
fourqure@fiu.edu
Role:Co-Principal Investigator
Individual: John Kominoski
Organization:Florida Coastal Everglades LTER Program
Address:
Department of Biological Sciences,
INWE,
SERC,
Florida International University,
Email Address:
jkominos@fiu.edu
Role:Co-Principal Investigator
Individual: Jennifer Rehage
Organization:Florida Coastal Everglades LTER Program
Address:
Department of Earth and Environment,
INWE, SERC,
Florida International University,
Email Address:
rehagej@fiu.edu
Role:Co-Principal Investigator
Individual: Kevin Grove
Organization:Florida Coastal Everglades LTER Program
Address:
Department of Global and Sociocultural Studies,
Florida International University,
Email Address:
kgrove@fiu.edu
Role:Co-Principal Investigator
Abstract:

Coastal ecosystems like the Florida Everglades provide many benefits to society. They protect coastlines from storms and store carbon. They provide habitat and food for important fisheries. They also support tourism and local economies, and store freshwater for millions of people. The Florida Coastal Everglades Long Term Ecological Research (FCE LTER) program addresses how and why coastal ecosystems are changing in response to sea level rise and the actions of people. Like many coastal ecosystems, the Florida Everglades are threatened by the diversion of freshwater to support urban and agricultural expansion. At the same time, sea level rise has caused coastal ecosystems to become saltier, threatening the freshwater supply, stressing freshwater plants, and causing the soils to collapse. When the soils beneath coastal wetlands disappear, seawater invades even more quickly. Researchers in the FCE LTER are continuing long-term studies and experiments to understand how these changes influence ecosystem functions and services. They are also developing tools for resource managers to create an effective freshwater restoration program. The science team includes an active community of graduate students. As a group, they reach the public through education and outreach activities, and regularly advise policy-makers on resource management decisions. The FCE LTER research program addresses how changing fresh and marine supplies of water influence coastal ecosystem dynamics through: (i) continued long-term assessment of changes in biogeochemistry, primary production, organic matter, and trophic dynamics in ecosystems along freshwater-to-marine gradients, (ii) maintenance of existing in situ and ex situ long-term experiments, (iii) use of high-resolution remote sensing, coupled with models to forecast landscape-scale changes, (iv) addition of synoptic satellite sites to capture discrete spatio-temporal responses to episodic disturbance, and (v) initiation of new experimental manipulations to determine drivers and mechanisms of resilience to saltwater intrusion. Data syntheses integrate month-to-annual and inter-annual data into models of water, nutrients, carbon, and species dynamics throughout the Everglades landscape to compare how ecosystems with different productivities and carbon stores respond (maintain, increase, or decline) to short- (pulses) and long-term changes (presses) in hydrologic connectivity. Understanding and predicting the drivers of abrupt changes in ecosystems is a key challenge in ecosystem ecology.

Funding:

NSF DEB # 1832229

Study Area:
Study Area Coverage:
Geographic Region:
Description:The FCE LTER Project Study area is located in South Florida, mostly in Everglades National Park. There are a total of 20 sampling sites located in two major regions: 1) Shark River Slough and 2) Taylor Slough/Panhandle.
Bounding Coordinates:
Northern:  25.761Southern:  24.913
Western:  -81.078Eastern:  -80.490

Time Period
Begin:
2018-12-01
End:
2020-11-30
Additional Award Information:
Funder:National Science Foundation
Funder ID:https://ror.org/021nxhr62
Number:1832229
Title:LTER: Drivers of Abrupt Change in the Florida Coastal Everglades
URL:https://www.nsf.gov/awardsearch/showAward?AWD_ID=1832229
Related Project:
Title:LTER: Coastal Oligotrophic Ecosystem Research
Personnel:
Individual: John Kominoski
Organization:Florida Coastal Everglades LTER Program
Address:
Florida International University,
11200 SW 8th Street,
Miami, FL 33199 USA
Phone:
305-348-7117 (voice)
Phone:
305-348-4096 (fax)
Email Address:
jkominos@fiu.edu
Role:Lead Principal Investigator
Individual: James Fourqurean
Organization:Florida Coastal Everglades LTER Program
Email Address:
fourqure@fiu.edu
Role:Co-Principal Investigator
Individual: Evelyn Gaiser
Organization:Florida Coastal Everglades LTER Program
Email Address:
gaisere@fiu.edu
Role:Co-Principal Investigator
Individual: Jennifer Rehage
Organization:Florida Coastal Everglades LTER Program
Email Address:
rehagej@fiu.edu
Role:Co-Principal Investigator
Individual: Kevin Grove
Organization:Florida Coastal Everglades LTER Program
Email Address:
kgrove@fiu.edu
Role:Co-Principal Investigator
Abstract:

Coastal ecosystems like the Florida Everglades provide many benefits and services to society including protection from storms, habitat and food for important fisheries, support of tourism and local economies, filtration of fresh water, and burial and storage of carbon that offsets greenhouse gas emissions. The Florida Coastal Everglades Long Term Ecological Research (FCE LTER) program addresses how and why coastal ecosystems and their services are changing. Like many coastal ecosystems, the Florida Everglades has been threatened by diversion of fresh water to support urban and agricultural expansion. At the same time, sea-level rise has caused saltwater intrusion of coastal ecosystems which stresses freshwater species, causes elevation loss, and contaminates municipal water resources. However, restoration of seasonal pulses of fresh water may counteract these threats. Researchers in the FCE LTER are continuing long-term studies and experiments to understand how changes in freshwater supply, sea-level rise, and disturbances like tropical storms interact to influence ecosystems and their services. The science team is guided by a diversity and inclusion plan to attract diverse scientists at all career stages. The team includes resource managers – who use discoveries and knowledge from the FCE LTER to guide effective freshwater restoration – and an active community of academic and agency scientists, teachers and other educators, graduate, undergraduate, and high school students. The project has a robust education and outreach program that engages the research team with the general public to advance science discoveries and protection of coastal ecosystems. The FCE LTER research program addresses how increased pulses of fresh and marine water will influence coastal ecosystem dynamics through: (i) continued long-term assessment of changes in biogeochemistry, primary production, organic matter, and trophic dynamics in ecosystems along freshwater-to-marine gradients with a focus on how these affect accumulation of carbon and related elevation change, (ii) meteorological studies that evaluate how the climate drivers of hydrologic presses and pulses are changing, (iii) social-ecological studies of how governance of freshwater restoration reflects the changing values of ecosystem services, and (iv) use of high-resolution remote sensing, coupled with models to forecast landscape-scale changes. A new experimental manipulation will determine drivers and mechanisms of resilience to saltwater intrusion. Data syntheses integrate month-to-annual and inter-annual data into models of water, nutrients, carbon, and species patterns and interactions throughout the Everglades landscape to compare how ecosystems with different productivities and carbon stores respond (maintain, increase, or decline) to short- (pulses) and long-term changes (presses) in hydrologic connectivity. Synthesis efforts will use data from national and international research networks aimed at understanding how chronic presses and increasing pulses determine ecosystem trajectories, addressing one of the most pressing challenges in contemporary ecology.

Funding:

NSF DEB # 2025954

Study Area:
Study Area Coverage:
Geographic Region:
Description:The FCE LTER Project Study area is located in South Florida, mostly in Everglades National Park. There are a total of 20 sampling sites located in two major regions: 1) Shark River Slough and 2) Taylor Slough/Panhandle.
Bounding Coordinates:
Northern:  25.761Southern:  24.913
Western:  -81.078Eastern:  -80.490

Time Period
Begin:
2021-03-01
End:
2025-02-28
Additional Award Information:
Funder:National Science Foundation
Funder ID:https://ror.org/021nxhr62
Number:2025954
Title:LTER: Coastal Oligotrophic Ecosystem Research
URL:https://www.nsf.gov/awardsearch/showAward?AWD_ID=2025954

Maintenance

Maintenance:
Description:

This is a physical dataset and subsequent data will be appended. This dataset replaces all previous versions of PHY_Fourqurean_004. The FCE program is discontinuing its practice of versioning data as of March 2013.

Frequency:
History:
scope:Added new data, removed records with missing values that were previously used to fill gaps on an hourly basis, removed cases where records overlapped, updated metadata
old value:Added new Data
change date:2023-09-15
Other Metadata

Additional Metadata

additionalMetadata
        |___text '\n    '
        |___element 'metadata'
        |     |___text '\n      '
        |     |___element 'additionalDataset'
        |     |     |___text '\n        '
        |     |     |___element 'researchType'
        |     |     |     |___text 'Physical data'
        |     |     |___text '\n        '
        |     |     |___element 'DatasetDistributionTypeandRestrictions'
        |     |     |     |___text 'Type I- Research funded by NSF LTER program'
        |     |     |___text '\n        '
        |     |     |___element 'addDistribution'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'submissionDate'
        |     |     |     |     |___text '2019-10-21'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'LTERsites'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'sitename'
        |     |     |     |     |___text 'TS/Ph9, TS/Ph10, TS/Ph11, TS/Ph7a, TS/Ph8'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'projectPermits'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'permit'
        |     |     |     |     |___text 'LTER permit number EVER-2001-SCI-0071'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'datasetInfoManagementNotes'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'notes'
        |     |     |     |     |___text 'This is a physical dataset and subsequent data will be appended.'
        |     |     |     |___text '\n        '
        |     |     |___text '\n      '
        |     |___text '\n    '
        |___text '\n  '

EDI is a collaboration between the University of New Mexico and the University of Wisconsin – Madison, Center for Limnology:

UNM logo UW-M logo