We designed novel field experimental infrastructure to resolve the relative importance of changes in the climate mean and variance in regulating the structure and function of dryland populations, communities, and ecosystem processes. The Mean x Variance Experiment (MVE) adds three novel elements to prior designs (Gherardi & Sala 2013) that have manipulated interannual variance in climate in the field by (i) determining interactive effects of mean and variance with a factorial design that crosses a drier mean with increased (more) variance, (ii) studying multiple dryland ecosystem types to compare their susceptibility to transition under interactive climate drivers, and (iii) adding stochasticity to our treatments to permit the antecedent effects that occur under natural climate variability. This new infrastructure enables direct experimental tests of the hypothesis that interactions between the mean and variance of precipitation will have larger ecological impacts than either the mean or variance in precipitation alone.
A subset of plots have soil moisture and temperature sensors to evaluate treatment effectiveness by addressing, How do MVE manipulations alter the mean and variance in soil moisture and temperature? And, how does micro-environmental variation among plots influence how much MVE treatments alter soil moisture profiles over three soil depths?
This data package includes soil moisture and temperature sensor data from the Mean x Variance Climate experiment in the Juniper Savanna ecosystem at the Sevilleta National Wildlife Refuge, Socorro, NM.