Data Package Metadata   View Summary

SEV-LTER Mean Variance Experiment Juniper Savanna Soil Moisture and Temperature

General Information
Data Package:
Local Identifier:knb-lter-sev.347.1
Title:SEV-LTER Mean Variance Experiment Juniper Savanna Soil Moisture and Temperature
Alternate Identifier:DOI PLACE HOLDER
Abstract:

We designed novel field experimental infrastructure to resolve the relative importance of changes in the climate mean and variance in regulating the structure and function of dryland populations, communities, and ecosystem processes. The Mean x Variance Experiment (MVE) adds three novel elements to prior designs (Gherardi & Sala 2013) that have manipulated interannual variance in climate in the field by (i) determining interactive effects of mean and variance with a factorial design that crosses a drier mean with increased (more) variance, (ii) studying multiple dryland ecosystem types to compare their susceptibility to transition under interactive climate drivers, and (iii) adding stochasticity to our treatments to permit the antecedent effects that occur under natural climate variability. This new infrastructure enables direct experimental tests of the hypothesis that interactions between the mean and variance of precipitation will have larger ecological impacts than either the mean or variance in precipitation alone.

A subset of plots have soil moisture and temperature sensors to evaluate treatment effectiveness by addressing, How do MVE manipulations alter the mean and variance in soil moisture and temperature? And, how does micro-environmental variation among plots influence how much MVE treatments alter soil moisture profiles over three soil depths?

This data package includes soil moisture and temperature sensor data from the Mean x Variance Climate experiment in the Juniper Savanna ecosystem at the Sevilleta National Wildlife Refuge, Socorro, NM.

Publication Date:2024-03-08
For more information:
Visit: DOI PLACE HOLDER

Time Period
Begin:
2022-08-16
End:
2023-12-31

People and Organizations
Contact:SEVIM(University of New Mexico, Information Manager) [  email ]
Creator:Rudgers, Jennifer A (University of New Mexico)
Creator:Baur, Lauren (University of New Mexico)
Creator:Collins, Scott L (University of New Mexico)
Creator:Litvak, Marcy E (University of New Mexico)
Creator:Newsome, Seth (University of New Mexico)
Creator:Pockman, William T (University of New Mexico)
Creator:Miller, Tom E.X. (Rice University)
Creator:Luo, Yiqi (Northern Arizona University)
Associate:Bacigalupa, Missy (Sevilleta LTER, Field Technician)
Associate:Morales, Javier O (University of New Mexico Sevilleta LTER Program, Field Sensor Technician, Field Sensor Technician)
Associate:Winter, Ara (University of New Mexico, Information Manager, Information Manager)

Data Entities
Data Table Name:
sev347_MVE_JuniperSavanna_SoilMoistureTemperature_31Dec2022
Description:
Hourly soil moisture and temperature data from sensors installed in the Mean-Variance experiment for the Sevilleta Long-Term Ecological Research (SEV-LTER) program
Data Table Name:
sev347_MVE_JuniperSavanna_SoilMoistureTemperature_31Dec2023
Description:
Hourly soil moisture and temperature data from sensors installed in the Mean-Variance experiment for the Sevilleta Long-Term Ecological Research (SEV-LTER) program
Data Table Name:
MVE_JuniperSavanna_Sensor_Labels
Description:
Labels associating the soil moisture and temperature sensors with plot location and the factorial mean x variance treatments
Other Name:
MVE_Experimental_Design_Table.png
Description:
Table showing MVE experimental design.
Detailed Metadata

Data Entities


Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/knb-lter-sev/347/1/b665c225d004d712c43c090194d21dd4
Name:sev347_MVE_JuniperSavanna_SoilMoistureTemperature_31Dec2022
Description:Hourly soil moisture and temperature data from sensors installed in the Mean-Variance experiment for the Sevilleta Long-Term Ecological Research (SEV-LTER) program
Number of Records:709452
Number of Columns:24

Table Structure
Object Name:sev347_MVE_JuniperSavanna_SoilMoistureTemperature_31Dec2022.csv
Size:103795856 byte
Authentication:549d3b9811df7c7ad4fcec2c68205a9c Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 sensor_typeblockmean_valuevar_2022var_2023trt_2022trt_2023
Column Name:sensor_id  
TIMESTAMP  
year  
year.f  
month  
month.f  
day  
day.f  
hour  
minute  
sensor  
sensor_type  
block  
plot  
depth  
depth.f  
value  
mean_trt  
mean_value  
var_trt  
var_2022  
var_2023  
trt_2022  
trt_2023  
Definition:Unique identifier for each sensor unit installed in the field, a concatenation of sensor (type), plot, and depthTime stamp for sensor datayear of observationyear of observationmonth of observationmonth of observationdate of observation as calendar daydate of observation as calendar dayhour of observationminute of observation - either 0 or 30type of sensor data"TEROS" - TEROS 11, Meter Group, Pullman, WA https://metergroup.com/products/teros-11/spatial location of plot in the experiment, set in blocks of 6 plots one of each treatment combinationplot identifier as a numberdepth of sensor installation into soildepth of sensor installation into soilvalue of sensor recorded data - for sensor = T, units are degrees C, for sensor = VWC, units are m^3/m^3treatment to manipulate soil moisture meantreatment to manipulate precipitation mean as a % of ambient precipitationtreatment to manipulate precipitation variance as a category (factor)that year's treatment to manipulate precipitation variance as a percentage of ambientthat year's treatment to manipulate precipitation variance as a percentage of ambientchange in percentage of ambient precipitationchange in percentage of ambient precipitation
Storage Type:string  
date  
float  
float  
float  
float  
float  
float  
float  
float  
string  
string  
string  
string  
string  
string  
float  
string  
string  
string  
string  
string  
float  
float  
Measurement Type:nominaldateTimeratioratioratioratioratioratioratiorationominalnominalnominalnominalnominalnominalrationominalnominalnominalnominalnominalratioratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD hh:mm:ss
Precision
Unitdimensionless
Typenatural
Min2018 
Max2018 
Unitdimensionless
Typenatural
Min2018 
Max2018 
Unitdimensionless
Typenatural
Min
Max12 
Unitdimensionless
Typenatural
Min
Max12 
Unitdimensionless
Typenatural
Min
Max31 
Unitdimensionless
Typenatural
Min
Max31 
Unitdimensionless
Typewhole
Min
Max23 
Unitdimensionless
Typewhole
Min
Max30 
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeT
DefinitionTemperature of soil
Source
Code Definition
CodeVWC
DefinitionVolumetric water content
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeTEROS
DefinitionType of sensor
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code1
DefinitionBlock 1
Source
Code Definition
Code2
DefinitionBlock 2
Source
Code Definition
Code3
DefinitionBlock 3
Source
Definitiontext
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code12
Definition12 cm
Source
Code Definition
Code22
Definition22 cm
Source
Code Definition
Code37
Definition37 cm
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code12
Definition12 cm
Source
Code Definition
Code22
Definition22 cm
Source
Code Definition
Code37
Definition37 cm
Source
Unitdimensionless
Typereal
Min-2.2 
Max33.7 
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Codeambient
Definitionambient precipitation
Source
Code Definition
Codedrier
Definition25% redcution in precipitation
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code-25
Definition25% redcution in precipitation
Source
Code Definition
Code0
Definitionambient precipitation
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Codeambient
Definitionnatural interannual variance
Source
Code Definition
Codemore variance
Definitionamplification of precipitation by +/- 50%
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code-50
Definition50% reduction in precipitation
Source
Code Definition
Code0
Definitionambient precipitation
Source
Code Definition
Code50
Definition50% increase in precipitation
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code-50
Definition50% reduction in precipitation
Source
Code Definition
Code0
Definitionambient precipitation
Source
Code Definition
Code50
Definition50% increase in precipitation
Source
Unitpercent
Typeinteger
Unitpercent
Typeinteger
Missing Value Code:
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
Explmissing
CodeNA
ExplMissing
CodeNA
Explmissing
CodeNA
Explmissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
Explmissing
CodeNA
ExplMissing
CodeNA
Explmissing
CodeNA
Explmissing
CodeNA
Explmissing
CodeNA
Explmissing
Accuracy Report:                                                
Accuracy Assessment:                                                
Coverage:                                                
Methods:                                                

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/knb-lter-sev/347/1/13d3558294cf182cff6f86e3baca46e4
Name:sev347_MVE_JuniperSavanna_SoilMoistureTemperature_31Dec2023
Description:Hourly soil moisture and temperature data from sensors installed in the Mean-Variance experiment for the Sevilleta Long-Term Ecological Research (SEV-LTER) program
Number of Records:1730916
Number of Columns:24

Table Structure
Object Name:sev347_MVE_JuniperSavanna_SoilMoistureTemperature_31Dec2023.csv
Size:251669183 byte
Authentication:ce884a6e5db3dbff804337de14f2aa2d Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 sensor_typeblockmean_valuevar_2022var_2023trt_2022trt_2023
Column Name:sensor_id  
TIMESTAMP  
year  
year.f  
month  
month.f  
day  
day.f  
hour  
minute  
sensor  
sensor_type  
block  
plot  
depth  
depth.f  
value  
mean_trt  
mean_value  
var_trt  
var_2022  
var_2023  
trt_2022  
trt_2023  
Definition:Unique identifier for each sensor unit installed in the field, a concatenation of sensor (type), plot, and depthTime stamp for sensor datayear of observationyear of observationmonth of observationmonth of observationdate of observation as calendar daydate of observation as calendar dayhour of observationminute of observation - either 0 or 30type of sensor data"TEROS" - TEROS 11, Meter Group, Pullman, WA https://metergroup.com/products/teros-11/spatial location of plot in the experiment, set in blocks of 6 plots one of each treatment combinationplot identifier as a numberdepth of sensor installation into soildepth of sensor installation into soilvalue of sensor recorded data - for sensor = T, units are degrees C, for sensor = VWC, units are m^3/m^3treatment to manipulate soil moisture meantreatment to manipulate precipitation mean as a % of ambient precipitationtreatment to manipulate precipitation variance as a category (factor)that year's treatment to manipulate precipitation variance as a percentage of ambientthat year's treatment to manipulate precipitation variance as a percentage of ambientchange in percentage of ambient precipitationchange in percentage of ambient precipitation
Storage Type:string  
date  
float  
float  
float  
float  
float  
float  
float  
float  
string  
string  
string  
string  
string  
string  
float  
string  
string  
string  
string  
string  
float  
float  
Measurement Type:nominaldateTimeratioratioratioratioratioratioratiorationominalnominalnominalnominalnominalnominalrationominalnominalnominalnominalnominalratioratio
Measurement Values Domain:
Definitiontext
FormatYYYY-MM-DD hh:mm:ss
Precision
Unitdimensionless
Typenatural
Min2018 
Max2018 
Unitdimensionless
Typenatural
Min2018 
Max2018 
Unitdimensionless
Typenatural
Min
Max12 
Unitdimensionless
Typenatural
Min
Max12 
Unitdimensionless
Typenatural
Min
Max31 
Unitdimensionless
Typenatural
Min
Max31 
Unitdimensionless
Typewhole
Min
Max23 
Unitdimensionless
Typewhole
Min
Max30 
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeT
DefinitionTemperature of soil
Source
Code Definition
CodeVWC
DefinitionVolumetric water content
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeTEROS
DefinitionType of sensor
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code1
DefinitionBlock 1
Source
Code Definition
Code2
DefinitionBlock 2
Source
Code Definition
Code3
DefinitionBlock 3
Source
Definitiontext
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code12
Definition12 cm
Source
Code Definition
Code22
Definition22 cm
Source
Code Definition
Code37
Definition37 cm
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code12
Definition12 cm
Source
Code Definition
Code22
Definition22 cm
Source
Code Definition
Code37
Definition37 cm
Source
Unitdimensionless
Typereal
Min-2.2 
Max33.7 
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Codeambient
Definitionambient precipitation
Source
Code Definition
Codedrier
Definition25% redcution in precipitation
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code-25
Definition25% redcution in precipitation
Source
Code Definition
Code0
Definitionambient precipitation
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Codeambient
Definitionnatural interannual variance
Source
Code Definition
Codemore variance
Definitionamplification of precipitation by +/- 50%
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code-50
Definition50% reduction in precipitation
Source
Code Definition
Code0
Definitionambient precipitation
Source
Code Definition
Code50
Definition50% increase in precipitation
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code-50
Definition50% reduction in precipitation
Source
Code Definition
Code0
Definitionambient precipitation
Source
Code Definition
Code50
Definition50% increase in precipitation
Source
Unitpercent
Typeinteger
Unitpercent
Typeinteger
Missing Value Code:
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
Explmissing
CodeNA
ExplMissing
CodeNA
Explmissing
CodeNA
Explmissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
ExplMissing
CodeNA
Explmissing
CodeNA
ExplMissing
CodeNA
Explmissing
CodeNA
Explmissing
CodeNA
Explmissing
CodeNA
Explmissing
Accuracy Report:                                                
Accuracy Assessment:                                                
Coverage:                                                
Methods:                                                

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/knb-lter-sev/347/1/89519b1deaac7dd7cd25ab4f1169be12
Name:MVE_JuniperSavanna_Sensor_Labels
Description:Labels associating the soil moisture and temperature sensors with plot location and the factorial mean x variance treatments
Number of Records:18
Number of Columns:10

Table Structure
Object Name:MVE_JuniperSavanna_Sensor_Labels.csv
Size:937 byte
Authentication:2ac8cc66c102431116dd84b88a97e40f Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,
Quote Character:"

Table Column Descriptions
 blocksensor_typeplotmean_valuemean_trtvar_trtvar_2022var_2023trt_2022trt_2023
Column Name:block  
sensor_type  
plot  
mean_value  
mean_trt  
var_trt  
var_2022  
var_2023  
trt_2022  
trt_2023  
Definition:spatial location of plot in the experiment, set in blocks of 6 plots, one of each treatment combinationtype of sensor instrumentPlot numbertreatment to manipulate precipitation mean as a % of ambient precipitationtreatment to manipulate precipitation mean as a categorytreatment to manipulate precipitation variance as a category (factor)that year's treatment to manipulate precipitation variance as a percentage of ambientthat year's treatment to manipulate precipitation variance as a percentage of ambientthat year's treatment to manipulate both mean and variance of precipitation as a percentage of ambient precipitationthat year's treatment to manipulate both mean and variance of precipitation as a percentage of ambient precipitation
Storage Type:string  
string  
string  
string  
string  
string  
string  
string  
float  
float  
Measurement Type:nominalnominalnominalnominalnominalnominalnominalnominalratioratio
Measurement Values Domain:
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code1
DefinitionBlock 1
Source
Code Definition
Code2
DefinitionBlock 2
Source
Code Definition
Code3
DefinitionBlock 3
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeTEROS
Definition"TEROS" - TEROS 11, Meter Group, Pullman, WA https://metergroup.com/products/teros-11/
Source
Definitiontext
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code-25
Definition25% reduction in precipitation
Source
Code Definition
Code0
Definitionambient precipitation
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Codeambient
Definition0% difference from ambient precipitation
Source
Code Definition
Codedrier
Definition25% reduction of ambient precipitation
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Codeambient
Definitionnatural interannual variance
Source
Code Definition
Codemore variance
Definitionamplification of precipitation by +/- 50%
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code-50
Definition50% reduction in precipitation
Source
Code Definition
Code0
Definitionambient precipitation
Source
Code Definition
Code50
Definition50% increase in precipitation
Source
Allowed Values and Definitions
Enumerated Domain 
Code Definition
Code-50
Definition50% reduction in precipitation
Source
Code Definition
Code0
Definitionambient precipitation
Source
Code Definition
Code50
Definition50% increase in precipitation
Source
Unitpercent
Typeinteger
Unitpercent
Typeinteger
Missing Value Code:
CodeNA
Explmissing
CodeNA
Explmissing
CodeNA
Explmissing
CodeNA
Explmissing
CodeNA
Explmissing
CodeNA
Explmissing
CodeNA
Explmissing
CodeNA
Explmissing
CodeNA
Explmissing
CodeNA
Explmissing
Accuracy Report:                    
Accuracy Assessment:                    
Coverage:                    
Methods:                    

Non-Categorized Data Resource

Name:MVE_Experimental_Design_Table.png
Entity Type:image/png
Description:Table showing MVE experimental design.
Physical Structure Description:
Object Name:MVE_Experimental_Design_Table.png
Size:72040 byte
Authentication:d974aa6f48fa0fde5faf05eb70b5685f Calculated By MD5
Externally Defined Format:
Format Name:image/png
Data:https://pasta-s.lternet.edu/package/data/eml/knb-lter-sev/347/1/325cca5c1efbc6b3fe0748d943f162eb

Data Package Usage Rights

This data package is released to the "public domain" under Creative Commons CC0 1.0 "No Rights Reserved" (see: https://creativecommons.org/publicdomain/zero/1.0/). It is considered professional etiquette to provide attribution of the original work if this data package is shared in whole or by individual components. A generic citation is provided for this data package on the website https://portal.edirepository.org (herein "website") in the summary metadata page. Communication (and collaboration) with the creators of this data package is recommended to prevent duplicate research or publication. This data package (and its components) is made available "as is" and with no warranty of accuracy or fitness for use. The creators of this data package and the website shall not be liable for any damages resulting from misinterpretation or misuse of the data package or its components. Periodic updates of this data package may be available from the website. Thank you.

Keywords

By Thesaurus:
(No thesaurus)SEV LTER, Variance, Sensors, Experimental, Infrastructure, Network, Mean-Variance, Variability, Environment
LTER controlled vocabularyPrecipitation, Temperature, Climate Change, Microclimate, Soil

Methods and Protocols

These methods, instrumentation and/or protocols apply to all data in this dataset:

Methods and protocols used in the collection of this data package
Description:

tudy System: Location. 

We installed infrastructure at the Sevilleta National Wildlife Refuge in central New Mexico, at the northern edge of the Chihuahuan Desert. The experiment is a central component of the Sevilleta Long-Term Ecological Research Program (SEV-LTER), funded by the US National Science Foundation (sevlter.unm.edu). Annual precipitation is 200–300 mm, the majority of which is summer monsoon rainfall.

Study System: Climate. 

Water is the most vital resource in drylands, and has high temporal variability at local and regional scales. SEV precipitation is weakly bimodal. Soil moisture accumulates in winter, particularly at higher elevations where snowfall is significant. Warm, dry conditions in late spring create a pulse of snowmelt moisture at high elevation, while severely depleting soil moisture at low elevation. Then, from July through September, the North American Monsoon drives localized convective storms that contribute ~60% of mean annual precipitation. Long-term minimum precipitation is <4mm every month, and precipitation reconstructions using Sevilleta tree-ring record reveal a history of severe drought every 6,070 years since the 17th century. Climate models predict higher winter and summer annual temperature, more frequent and intense El Niño events, declines in winter/spring precipitation and more variable monsoon rainfall. Dryland water availability is determined not only by precipitation inputs but also by the strong influence of temperature on evaporative demand. The Standardized Precipitation Evapotranspiration Index (SPEI), accounts for the influence of temperature on water demand. More negative SPEI values signify drier and hotter conditions. SPEI thus influences the amount and duration of soil moisture. Since 1900, mean SPEI has declined in our region, while variance in SPEI has increased since 1980, a scenario of dual change in climate mean and variance. Climate warming affects trends in long-run mean SPEI, while altered precipitation amplifies variance in SPEI. 

Design: Stochastic precipitation variance. 

To increase variance in precipitation stochastically, without changing the mean, we paired plots and amplified their precipitation regimes. Specifically, every water year, plots within a pair are randomly assigned to either a 50% decrease or 50% increase in precipitation. This is achieved during our annual MVE flip party, where participants flip coins to determine whether paired plots will retain the same treatments or treatments will be flipped within the pair.

We chose 50% as our target manipulation to amplify variance because a 50% change produced a 66% increase in the coefficient of variation (CV) of precipitation at a site in southern New Mexico, matching projected regional climate extremes (Gherardi and Sala 2015a, b). However, because Gheradi and Sala (2015a) were not testing for antecedent effects, they applied regular alternation between high and low rainfall years, which has the effect of reducing stochasticity, potentially even below naturally occurring levels. Our treatment created stochasticity through random assignments of which plot received extreme high or extreme low precipitation in a given year. Extreme wet and dry years were achieved by covering plots with roof panels that intercepted precipitation year-round using a modified version of a prior design (Gherardi & Sala, 2013). Water was captured from shelters with gutters, stored in tanks, then delivered to the paired plots via solar-powered pumps (Rudgers et al. 2023). 

Design: Increasing mean aridity. 

To reduce the long-run mean precipitation, we intercepted 25%, a moderate forcing within range of likely climate futures. Control plots received similar shelters but with inverted panels that allowed precipitation through. Plots receiving both reduced mean and increased variance randomly alternated between 75% less net precipitation (-25% for mean - 50% for variance) or 25% more (-25% for mean + 50% for variance). Simulations of historical Sevilleta LTER met data projected that 25% rainfall reductions would reduce SPEI by ~19% while 50% deviations will increase the coefficient of variation (CV) of SPEI by ~53%, without altering its mean under feasible replication (22 plots simulated per biome).

Other design elements. 

Replication was uneven to account for higher variability among plots in the increased variance treatment, consistent with initial modeling efforts using our long-term climate data. All 30 plots per ecosystem were hydrologically isolated via aluminum flashing installed to 20 cm depth using a gas-powered trencher, and were co-located with existing meteorological stations.

Sensor network. 

In a subset of 18 plots per site, we installed sensors to track soil moisture and temperature at three depths (12.5, 22.5, 37.5 cm; TEROS 11 sensors, Meter Group, 2365 NE Hopkins Ct., Pullman, WA 99163, +1.509.332.2756, metergroup.com). The sensor manuals are available here:

https://publications.metergroup.com/Manuals/20587_TEROS11-12_Manual_Web.pdf

Some values have missing data at ~XX% error rate due to sensor or wireless network temporary failures, rodent damage to wires and cables, or installation of replacement sensors.

Gherardi, L. A., & Sala, O. E. (2013). Automated rainfall manipulation system: a reliable and inexpensive tool for ecologists. Ecosphere, 4(2), 1–10. doi:10.1890/es12-00371.1

Gherardi, L. A., & Sala, O. E. (2015a). Enhanced interannual precipitation variability increases plant functional diversity that in turn ameliorates negative impact on productivity. Ecology Letters, 18(12), 1293–1300. doi:10.1111/ele.12523

Gherardi, L. A., & Sala, O. E. (2015b). Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proceedings of the National Academy of Sciences of the United States of America, 112(41), 12735–12740. doi:10.1073/pnas.1506433112

Rudgers, J. A., Luketich, A., Bacigalupa, M., Baur, L. E., Collins, S. L., Hall, K. M., Hou, E., Litvak, M. E., Luo, Y., & Miller, T. E. (2023). Infrastructure to factorially manipulate the mean and variance of precipitation in the field. Ecosphere, 14(7), e4603. https://doi.org/10.1002/ecs2.4603

People and Organizations

Publishers:
Organization:Environmental Data Initiative
Email Address:
info@edirepository.org
Web Address:
https://edirepository.org
Id:https://ror.org/0330j0z60
Creators:
Individual: Jennifer A Rudgers
Organization:University of New Mexico
Email Address:
jrudgers@unm.edu
Id:https://orcid.org/0000-0001-7094-4857
Individual: Lauren Baur
Organization:University of New Mexico
Email Address:
lbaur@unm.edu
Individual: Scott L Collins
Organization:University of New Mexico
Email Address:
scollins@unm.edu
Individual: Marcy E Litvak
Organization:University of New Mexico
Email Address:
mlitvak@unm.edu
Individual: Seth Newsome
Organization:University of New Mexico
Email Address:
newsome@unm.edu
Individual: William T Pockman
Organization:University of New Mexico
Email Address:
pockman@unm.edu
Id:https://orcid.org/0000-0002-3286-0457
Individual: Tom E.X. Miller
Organization:Rice University
Email Address:
tom.miller@unm.edu
Individual: Yiqi Luo
Organization:Northern Arizona University
Email Address:
YL2735@cornell.edu
Contacts:
Individual: SEVIM
Organization:University of New Mexico
Position:Information Manager
Email Address:
sevim@unm.edu
Associated Parties:
Individual: Missy Bacigalupa
Organization:Sevilleta LTER
Email Address:
mbacigalupa@gmail.com
Role:Field Technician
Individual: Javier O Morales
Organization:University of New Mexico Sevilleta LTER Program
Position:Field Sensor Technician
Email Address:
omorales1@unm.edu
Role:Field Sensor Technician
Individual: Ara Winter
Organization:University of New Mexico
Position:Information Manager
Email Address:
akooser@unm.edu
Role:Information Manager

Temporal, Geographic and Taxonomic Coverage

Temporal, Geographic and/or Taxonomic information that applies to all data in this dataset:

Time Period
Begin:
2022-08-16
End:
2023-12-31
Sampling Site: 
Description:meanvar_jsav The Mean x Variance Experiment in the Juniper Savanna site is New Mexico juniper savanna ecosystem, dominated by one-seed juniper (Juniperus monosperma). Understory grass dominants are blue grama (Bouteloua gracilis) and black grama (B. eriopoda).
Site Coordinates:
Longitude (degree): -106.6244Latitude (degree): 34.2688

Project

Parent Project Information:

Title:LTER: Sevilleta (SEV) Site: Climate Variability at Dryland Ecotones
Personnel:
Individual: Jennifer A Rudgers
Organization:University of New Mexico
Email Address:
jrudgers@unm.edu
Id:https://orcid.org/0000-0001-7094-4857
Role:Principal Investigator
Additional Award Information:
Funder:National Science Foundation
Number:1655499
Title:LTER: Sevilleta (SEV) Site: Climate Variability at Dryland Ecotones
Additional Award Information:
Funder:National Science Foundation
Number:1748133
Title:EAGER: Collaborative Research: Sevilleta LTER Environmental Variability at Dryland Ecotones
Related Project:
Title:EAGER: Collaborative Research: Sevilleta LTER Environmental Variability at Dryland Ecotones
Personnel:
Individual: Jennifer A Rudgers
Organization:University of New Mexico
Email Address:
jrudgers@unm.edu
Id:https://orcid.org/0000-0001-7094-4857
Role:Principal Investigator
Funding: NSF 1748133
Related Project:
Title:No project title to report
Personnel:
Individual: Scott L Collins
Organization:University of New Mexico
Email Address:
scollins@unm.edu
Role:Principal Investigator
Funding: No funding to report
Related Project:
Title:No project title to report
Personnel:
Individual: Marcy E Litvak
Organization:University of New Mexico
Email Address:
mlitvak@unm.edu
Role:Principal Investigator
Funding: No funding to report
Related Project:
Title:No project title to report
Personnel:
Individual: Seth Newsome
Organization:University of New Mexico
Email Address:
newsome@unm.edu
Role:Principal Investigator
Funding: No funding to report
Related Project:
Title:No project title to report
Personnel:
Individual: William T Pockman
Organization:University of New Mexico
Email Address:
pockman@unm.edu
Id:https://orcid.org/0000-0002-3286-0457
Role:Principal Investigator
Funding: No funding to report
Related Project:
Title:No project title to report
Personnel:
Individual: Tom E.X. Miller
Organization:Rice University
Email Address:
tom.miller@unm.edu
Role:Principal Investigator
Funding: No funding to report
Related Project:
Title:No project title to report
Personnel:
Individual: Yiqi Luo
Organization:Northern Arizona University
Email Address:
yiqi.luo@nau.edu
Role:Principal Investigator
Funding: No funding to report

Maintenance

Maintenance:
Description:

Ongoing collection of data

Frequency:
Other Metadata

Additional Metadata

additionalMetadata
        |___text '\n      '
        |___element 'metadata'
        |     |___text '\n         '
        |     |___element 'fetchedFromEDI'
        |     |        \___attribute 'dateFetched' = '2024-03-07'
        |     |        \___attribute 'packageID' = 'knb-lter-sev.346.1'
        |     |___text '\n      '
        |___text '\n   '

Additional Metadata

additionalMetadata
        |___text '\n      '
        |___element 'metadata'
        |     |___text '\n         '
        |     |___element 'importedFromXML'
        |     |        \___attribute 'dateImported' = '2024-03-07'
        |     |        \___attribute 'filename' = 'knb-lter-sev.346.1.xml'
        |     |        \___attribute 'taxonomicCoverageExempt' = 'True'
        |     |___text '\n      '
        |___text '\n   '

Additional Metadata

additionalMetadata
        |___text '\n      '
        |___element 'metadata'
        |     |___text '\n         '
        |     |___element 'emlEditor'
        |     |        \___attribute 'app' = 'ezEML'
        |     |        \___attribute 'release' = '2024.02.21'
        |     |___text '\n      '
        |___text '\n   '

EDI is a collaboration between the University of New Mexico and the University of Wisconsin – Madison, Center for Limnology:

UNM logo UW-M logo