Data Package Metadata   View Summary

Data for Lake Mendota Phosphorus Cycling Model

General Information
Data Package:
Local Identifier:edi.141.2
Title:Data for Lake Mendota Phosphorus Cycling Model
Alternate Identifier:DOI PLACE HOLDER
Abstract:

There is an opportunity to advance both prediction accuracy and scientific discovery for phosphorus cycling in Lake Mendota (Wisconsin, USA). Twenty years of phosphorus measurements show patterns at seasonal to decadal scales, suggesting a variety of drivers control lake phosphorus dynamics. Our objectives are to produce a phosphorus budget for Lake Mendota and to accurately predict summertime epilimnetic phosphorus using a simple and adaptable modeling approach. We combined ecological knowledge with machine learning in the emerging paradigm, theory-guided data science (TGDS). A mass balance model (PROCESS) accounted for most of the observed pattern in lake phosphorus. However, inclusion of machine learning (RNN) and an ecological principle (PGRNN) to constrain its output improved summertime phosphorus predictions and accounted for long term changes missed by the mass balance model. TGDS indicated additional processes related to water temperature, thermal stratification, and long term changes in external loads are needed to improve our mass balance modeling approach.

Publication Date:2019-02-28

Time Period
Begin:
1995-05-09
End:
2015-12-31

People and Organizations
Contact:Hanson, Paul C (University of Wisconsin-Madison, Center for Limnology) [  email ]
Creator:Hanson, Paul C (University of Wisconsin-Madison, Center for Limnology)
Creator:Stillman, Aviah B (University of Wisconsin-Madison, Center for Limnology)

Data Entities
Data Table Name:
Lake Mendota chemical properties through time
Description:
Lake Mendota chemical properties through time
Data Table Name:
Lake water surface levels through time
Description:
Lake water surface levels through time
Data Table Name:
Chemical and physical properties of Pheasant Branch inflow through time
Description:
Chemical and physical properties of Pheasant Branch inflow through time
Data Table Name:
Chemical and physical properties of Yahara River inflow through time
Description:
Chemical and physical properties of Yahara River inflow through time
Data Table Name:
Thermocline depth, epilimnetic temperature, and hypolimnetic temperature for Lake Mendota through time
Description:
Thermocline depth, epilimnetic temperature, and hypolimnetic temperature for Lake Mendota through time
Data Table Name:
Atmospheric data for Madison through time
Description:
Atmospheric data for Madison through time
Data Table Name:
Hypsometry factors for various lakes
Description:
Hypsometry factors for various lakes
Data Table Name:
Driving data for PROCESS
Description:
Driving data for PROCESS
Data Table Name:
The observed epilimnetic phosphorus and the corresponding modeled output for epilimnetic phosphorus from PROCESS
Description:
The observed epilimnetic phosphorus and the corresponding modeled output for epilimnetic phosphorus from PROCESS
Data Table Name:
The observed hypolimnetic phosphorus and the corresponding modeled output for hypolimnetic phosphorus from PROCESS
Description:
The observed hypolimnetic phosphorus and the corresponding modeled output for hypolimnetic phosphorus from PROCESS
Data Table Name:
The PROCESS model outputs for epilimnetic phosphorus and hypolimnetic phosphorus at the daily time scale
Description:
The PROCESS model outputs for epilimnetic phosphorus and hypolimnetic phosphorus at the daily time scale
Data Table Name:
Modeled outputs of lake phosphorus from PGRNN when validated on segment 1
Description:
Modeled outputs of lake phosphorus from PGRNN when validated on segment 1
Data Table Name:
Modeled outputs of lake phosphorus from PGRNN when the ecological principal loss function was not included
Description:
Modeled outputs of lake phosphorus from PGRNN when the ecological principal loss function was not included
Data Table Name:
Modeled outputs of lake phosphorus from PGRNN when validated on segment 2
Description:
Modeled outputs of lake phosphorus from PGRNN when validated on segment 2
Data Table Name:
Modeled outputs of lake phosphorus from PGRNN when validated on segment 3
Description:
Modeled outputs of lake phosphorus from PGRNN when validated on segment 3
Data Table Name:
Modeled outputs of lake phosphorus from PGRNN when validated on segment 4
Description:
Modeled outputs of lake phosphorus from PGRNN when validated on segment 4
Data Table Name:
Modeled outputs of lake phosphorus from PGRNN when validated on segment 5
Description:
Modeled outputs of lake phosphorus from PGRNN when validated on segment 5
Data Table Name:
Modeled outputs of lake phosphorus from PGRNN when validated on segment 6
Description:
Modeled outputs of lake phosphorus from PGRNN when validated on segment 6
Data Table Name:
Modeled outputs of lake phosphorus from RNN when validated on segment 1
Description:
Modeled outputs of lake phosphorus from RNN when validated on segment 1
Data Table Name:
Modeled outputs of lake phosphorus from RNN when validated on segment 2
Description:
Modeled outputs of lake phosphorus from RNN when validated on segment 2
Data Table Name:
Modeled outputs of lake phosphorus from RNN when validated on segment 3
Description:
Modeled outputs of lake phosphorus from RNN when validated on segment 3
Data Table Name:
Modeled outputs of lake phosphorus from RNN when validated on segment 4
Description:
Modeled outputs of lake phosphorus from RNN when validated on segment 4
Data Table Name:
Modeled outputs of lake phosphorus from RNN when validated on segment 5
Description:
Modeled outputs of lake phosphorus from RNN when validated on segment 5
Data Table Name:
Modeled outputs of lake phosphorus from RNN when validated on segment 6
Description:
Modeled outputs of lake phosphorus from RNN when validated on segment 6
Detailed Metadata

Data Entities


Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/f417d5bc6975fefea10bdc76fc4a44ea
Name:Lake Mendota chemical properties through time
Description:Lake Mendota chemical properties through time
Number of Records:9443
Number of Columns:9

Table Structure
Object Name:chemphys.csv
Size:293193 byte
Authentication:721cc6c72292480b731a0bb07bbb4aa8 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:lakeid  
year4  
daynum  
sampledate  
depth  
totpf  
totpuf  
totpuf_sloh  
drp_sloh  
Definition:Lake identificationYear the sample was takenDay of yearDay the sample was takenDepth at which the sample was takenTotal dissolved phosphorus or a filtered sampleTotal phosphorus unfilteredTotal phosphorus unfiltered from WI State Laboratory of HygieneDissolved reactive phosphorus from WI State Laboratory of Hygiene
Storage Type:string  
date  
float  
date  
float  
float  
float  
float  
float  
Measurement Type:nominaldateTimeratiodateTimeratioratioratioratioratio
Measurement Values Domain:
DefinitionLake identification
FormatYYYY
Precision
Unitnumber
Typenatural
Min
Max340 
FormatMM/DD/YYYY
Precision
Unitmeter
Typereal
Min
Max25.2 
UnitmicrogramsPerLiter
Typereal
Min
Max521 
UnitmicrogramsPerLiter
Typereal
Min
Max600 
UnitmilligramsPerLiter
Typereal
Min0.01 
Max1.52 
UnitmilligramsPerLiter
Typereal
Min
Max1.65 
Missing Value Code:                  
Accuracy Report:                  
Accuracy Assessment:                  
Coverage:                  
Methods:                  

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/08dda6201227efa32362e7e8908eaaee
Name:Lake water surface levels through time
Description:Lake water surface levels through time
Number of Records:8396
Number of Columns:5

Table Structure
Object Name:LakeLevel.csv
Size:304976 byte
Authentication:75f33f299568a0cd394eac14aa4112c4 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:Date  
Lake_Kegonsa  
Lake_Mendota  
Lake_Monona  
Lake_Waubesa  
Definition:Date the sample was takenLake elevation of Lake KegonsaLake elevation of Lake MendotaLake elevation of Lake MononaLake elevation of Lake Waubesa
Storage Type:date  
float  
float  
float  
float  
Measurement Type:dateTimeratioratioratioratio
Measurement Values Domain:
FormatMM/DD/YYYY
Precision
Unitfoot
Typereal
Min842.04 
Max851.41 
Unitfoot
Typereal
Min842.94 
Max1021 
Unitfoot
Typereal
Min842.49 
Max1337 
Unitfoot
Typereal
Min838.6 
Max1279 
Missing Value Code:          
Accuracy Report:          
Accuracy Assessment:          
Coverage:          
Methods:          

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/5fb78deb53e1c1fc63d4f7ce2bb1ef4c
Name:Chemical and physical properties of Pheasant Branch inflow through time
Description:Chemical and physical properties of Pheasant Branch inflow through time
Number of Records:13513
Number of Columns:15

Table Structure
Object Name:Mendota_pheasant_branch_30year2xP.csv
Size:1621674 byte
Authentication:4227f94534b60c687146bbcdbe97e3a2 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:time  
FLOW  
SALT  
TEMP  
PHS_frp  
PHS_frp_ads  
OGM_dop  
OGM_pop  
OGM_don  
NIT_amm  
NIT_nit  
OGM_docr  
CAR_dic  
CAR_pH  
SIL_rsi  
Definition:Date the sample was takenStream flowStream salinityWater temperatureFilterable reactive phosphorus concentrationFiltered reactive phosphorus, absorbedDissolved organic phosphorusParticulate organic phosphorusDissolved organic nitrogen concentrationAmmonium concentrationNitrate concentrationRecalcitrant dissolved organic carbon concentrationDissolved inorganic carbon concentrationpHSoluble reactive silica
Storage Type:date  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
Measurement Type:dateTimeratioratioratioratioratioratioratioratioratioratioratioratioratioratio
Measurement Values Domain:
FormatYYYY-MM-DD
Precision
UnitcubicMetersPerSecond
Typereal
Min
Max15.58 
UnitmilligramsPerLiter
Typewhole
Min
Max
Unitcelsius
Typereal
Min0.51 
Max23.91 
UnitmillimolesPerMeterCubed
Typereal
Min0.24 
Max8.23 
UnitmillimolesPerMeterCubed
Typereal
Min0.79 
Max27.31 
UnitmillimolesPerMeterCubed
Typereal
Min0.31 
Max10.65 
UnitmillimolesPerMeterCubed
Typereal
Min0.24 
Max8.43 
UnitmillimolesPerMeterCubed
Typereal
Min2.01 
Max57.19 
UnitmillimolesPerMeterCubed
Typereal
Min30.22 
Max193.24 
UnitmillimolesPerMeterCubed
Typereal
Min20.14 
Max571.85 
UnitmillimolesPerMeterCubed
Typereal
Min583.33 
Max583.33 
UnitmillimolesPerMeterCubed
Typenatural
Min5000 
Max5000 
Unitdimensionless
Typereal
Min7.7 
Max7.7 
UnitmillimolesPerMeterCubed
Typenatural
Min190 
Max190 
Missing Value Code:                              
Accuracy Report:                              
Accuracy Assessment:                              
Coverage:                              
Methods:                              

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/2e4baf1ecca69ca29bc1f48c1663cf1c
Name:Chemical and physical properties of Yahara River inflow through time
Description:Chemical and physical properties of Yahara River inflow through time
Number of Records:13513
Number of Columns:15

Table Structure
Object Name:Mendota_yahara_30year2xP.csv
Size:1637274 byte
Authentication:f135a93b25a201d060da3d4b3dac14e3 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:time  
FLOW  
SALT  
TEMP  
PHS_frp  
PHS_frp_ads  
OGM_dop  
OGM_pop  
OGM_don  
NIT_amm  
NIT_nit  
OGM_docr  
CAR_dic  
CAR_pH  
SIL_rsi  
Definition:Date the sample was takenStream flowStream salinityWater temperatureFilterable reactive phosphorus concentrationFiltered reactive phosphorus, absorbedDissolved organic phosphorusParticulate organic phosphorusDissolved organic nitrogen concentrationAmmonium concentrationNitrate concentrationRecalcitrant dissolved organic carbon concentrationDissolved inorganic carbon concentrationpHSoluble reactive silica
Storage Type:date  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
Measurement Type:dateTimeratioratioratioratioratioratioratioratioratioratioratioratioratioratio
Measurement Values Domain:
FormatYYYY-MM-DD
Precision
UnitcubicMetersPerSecond
Typereal
Min0.11 
Max88.07 
UnitmilligramsPerLiter
Typewhole
Min
Max
Unitcelsius
Typereal
Min-1.39 
Max29.1 
UnitmillimolesPerMeterCubed
Typereal
Min0.44 
Max4.47 
UnitmillimolesPerMeterCubed
Typereal
Min0.93 
Max9.51 
UnitmillimolesPerMeterCubed
Typereal
Min0.36 
Max3.71 
UnitmillimolesPerMeterCubed
Typereal
Min0.13 
Max1.33 
UnitmillimolesPerMeterCubed
Typereal
Min16.23 
Max404.02 
UnitmillimolesPerMeterCubed
Typereal
Min0.31 
Max719.83 
UnitmillimolesPerMeterCubed
Typereal
Min162.34 
Max4040.17 
UnitmillimolesPerMeterCubed
Typereal
Min583.33 
Max583.33 
UnitmillimolesPerMeterCubed
Typenatural
Min5000 
Max5000 
Unitdimensionless
Typereal
Min7.7 
Max7.7 
UnitmillimolesPerMeterCubed
Typenatural
Min190 
Max190 
Missing Value Code:                              
Accuracy Report:                              
Accuracy Assessment:                              
Coverage:                              
Methods:                              

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/f2e56a9f305b9cc590a9592b44a61094
Name:Thermocline depth, epilimnetic temperature, and hypolimnetic temperature for Lake Mendota through time
Description:Thermocline depth, epilimnetic temperature, and hypolimnetic temperature for Lake Mendota through time
Number of Records:7542
Number of Columns:4

Table Structure
Object Name:Modeled_thermocline_daily.csv
Size:425385 byte
Authentication:11ac79a9c0cb30d9d7c53d51480fcf92 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:datetime  
thermo_depth  
EpiTemp  
HypoTemp  
Definition:Date the sample was takenDepth to the thermocline from the surface of the lakeWater temperature in the epilimnionWater temperature in the hypolimnion
Storage Type:date  
float  
float  
float  
Measurement Type:dateTimeratioratioratio
Measurement Values Domain:
FormatYYYY-MM-DD
Precision
Unitmeter
Typereal
Min0.67 
Max22.04 
Unitcelsius
Typereal
Min0.07 
Max30.35 
Unitcelsius
Typereal
Min0.09 
Max13.92 
Missing Value Code:        
Accuracy Report:        
Accuracy Assessment:        
Coverage:        
Methods:        

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/99f3d1c88464f1cdee86bbfdb6612a28
Name:Atmospheric data for Madison through time
Description:Atmospheric data for Madison through time
Number of Records:7856
Number of Columns:5

Table Structure
Object Name:NLDAS_daily.csv
Size:605195 byte
Authentication:3d47e09273004faeb654315ed7368870 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:day  
AirTemp_C  
ShortWave_W_m2  
Rain_m  
WindSpeed_m_s  
Definition:Date the sample was takenAir temperatureShortwave radiationPrecipitationWindspeed
Storage Type:date  
float  
float  
float  
float  
Measurement Type:dateTimeratioratioratioratio
Measurement Values Domain:
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Min-31.95 
Max35.5 
UnitwattPerMeterSquared
Typereal
Min
Max334.89 
Unitmeter
Typereal
Min
Max0.12 
UnitmetersPerSecond
Typereal
Min0.83 
Max11.44 
Missing Value Code:          
Accuracy Report:          
Accuracy Assessment:          
Coverage:          
Methods:          

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/c7ab02fbaf8529280cfd32fbb20a6600
Name:Hypsometry factors for various lakes
Description:Hypsometry factors for various lakes
Number of Records:306
Number of Columns:3

Table Structure
Object Name:ntl301_hypso.csv
Size:5700 byte
Authentication:be263c8dc4510bdd04ca6fa2a5406e47 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:lakeid  
depth  
hp_factor  
Definition:Lake identificationDepth below the lake surfaceHypsometry factor (volume percent for that layer)
Storage Type:string  
float  
float  
Measurement Type:nominalratioratio
Measurement Values Domain:
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeAL
DefinitionAllequash Lake
Source
Code Definition
CodeBM
DefinitionBig Muskellunge Lake
Source
Code Definition
CodeCB
DefinitionBog 27-2 (Crystal Bog)
Source
Code Definition
CodeCR
DefinitionCrystal Lake
Source
Code Definition
CodeLRN
DefinitionUnknown
Source
Code Definition
CodeLRS
DefinitionUnknown
Source
Code Definition
CodeSP
DefinitionSparkling Lake
Source
Code Definition
CodeTB
DefinitionBog 12-15 (Trout Bog)
Source
Code Definition
CodeTR
DefinitionTrout Lake
Source
Code Definition
CodeME
DefinitionLake Mendota
Source
Code Definition
CodeMO
DefinitionLake Monona
Source
Code Definition
CodeL1
DefinitionUnknown
Source
Code Definition
CodeL2
DefinitionUnknown
Source
Unitmeter
Typereal
Min
Max35.7 
Unitdimensionless
Typereal
Min
Max0.54 
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/61b0a871e7311027fd623766455b1854
Name:Driving data for PROCESS
Description:Driving data for PROCESS
Number of Records:7542
Number of Columns:9

Table Structure
Object Name:P_Drivers.csv
Size:814379 byte
Authentication:613e41c4611aa7cb6d5acc0f91c516ef Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:SampleDate  
EpiTemp  
HypoTemp  
Stratified  
Thermocline  
EpiVolume  
HypoVolume  
Discharge  
PLoad  
Definition:Date the sample was takenWater temperature of epilimnionWater temperature of hypolimnionWhether the lake was stratified or not on that dayThermocline depth measured from lake surfaceVolume of the epilimnionVolume of the hypolimnionOverland flow into the lakeLake phosphorus load
Storage Type:date  
float  
float  
string  
float  
float  
float  
float  
float  
Measurement Type:dateTimeratiorationominalratioratioratioratioratio
Measurement Values Domain:
FormatYYYY-MM-DD
Precision
Unitcelsius
Typereal
Min0.07 
Max30.35 
Unitcelsius
Typereal
Min0.09 
Max13.92 
Allowed Values and Definitions
Enumerated Domain 
Code Definition
CodeFALSE
DefinitionNot stratified
Source
Code Definition
CodeTRUE
DefinitionStratified
Source
Unitmeter
Typereal
Min0.67 
Max22.04 
UnitcubicMeter
Typereal
Min46837162.21 
Max548147842.4 
UnitcubicMeter
Typereal
Min3364223.6 
Max504674903.79 
UnitcubicMetersPerDay
Typereal
Min26912.29 
Max15658057.73 
UnitgramsPerSecond
Typereal
Min0.01 
Max1.96 
Missing Value Code:                  
Accuracy Report:                  
Accuracy Assessment:                  
Coverage:                  
Methods:                  

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/36ab1c3f6ef72402030d5aea6df5ffb0
Name:The observed epilimnetic phosphorus and the corresponding modeled output for epilimnetic phosphorus from PROCESS
Description:The observed epilimnetic phosphorus and the corresponding modeled output for epilimnetic phosphorus from PROCESS
Number of Records:322
Number of Columns:3

Table Structure
Object Name:P_EpilimnionP.csv
Size:11426 byte
Authentication:c6f544804f3f58d291db3c06df25b9c6 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:SampleDate  
obsEpiP  
modelEpiP  
Definition:Date the sample was takenObservational epilimnetic phosphorus concentrationModel predictions for epilimnetic phosphorus concentrations
Storage Type:date  
float  
float  
Measurement Type:dateTimeratioratio
Measurement Values Domain:
FormatYYYY-MM-DD
Precision
UnitgramsPerCubicMeter
Typereal
Min0.01 
Max0.21 
UnitgramsPerCubicMeter
Typereal
Min0.01 
Max0.17 
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/0770b927f6206bd5f1f5b4e37bbab13b
Name:The observed hypolimnetic phosphorus and the corresponding modeled output for hypolimnetic phosphorus from PROCESS
Description:The observed hypolimnetic phosphorus and the corresponding modeled output for hypolimnetic phosphorus from PROCESS
Number of Records:121
Number of Columns:3

Table Structure
Object Name:P_HypolimnionP.csv
Size:4841 byte
Authentication:7c3111452e073fbb67af929e1908b09b Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:SampleDate  
obsHypoP  
modelHypoP  
Definition:Date the sample was takenObservational hypolimnetic phosphorus concentrationModel predictions for hypolimnetic phosphorus concentrations
Storage Type:date  
float  
float  
Measurement Type:dateTimeratioratio
Measurement Values Domain:
FormatYYYY-MM-DD
Precision
UnitgramsPerCubicMeter
Typereal
Min0.05 
Max0.47 
UnitgramsPerCubicMeter
Typereal
Min0.07 
Max0.31 
Missing Value Code:      
Accuracy Report:      
Accuracy Assessment:      
Coverage:      
Methods:      

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/c06f1ebc0b6ee62575ff703f82bc3b98
Name:The PROCESS model outputs for epilimnetic phosphorus and hypolimnetic phosphorus at the daily time scale
Description:The PROCESS model outputs for epilimnetic phosphorus and hypolimnetic phosphorus at the daily time scale
Number of Records:7542
Number of Columns:5

Table Structure
Object Name:P_ModelOutput.csv
Size:613395 byte
Authentication:1a259186e64b488024dfc23be62b94f6 Calculated By MD5
Text Format:
Number of Header Lines:1
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:SampleDate  
EpiP  
EpiPConc  
HypoP  
HypoPConc  
Definition:Time series for model evaluationModel predictions for epilimnetic phosphorus loadModel predictions for epilimnetic phosphorus concentrationsModel predictions for hypolimnetic phosphorus loadModel predictions for hypolimnetic phosphorus concentrations
Storage Type:date  
float  
float  
float  
float  
Measurement Type:dateTimeratioratioratioratio
Measurement Values Domain:
FormatYYYY-MM-DD
Precision
Unitgram
Typereal
Min1337309.6 
Max69426372.49 
UnitgramsPerCubicMeter
Typereal
Min0.01 
Max0.17 
UnitgramsPerCubicMeter
Typereal
Min307489.63 
Max86359584.71 
UnitgramsPerCubicMeter
Typereal
Min0.07 
Max0.4 
Missing Value Code:          
Accuracy Report:          
Accuracy Assessment:          
Coverage:          
Methods:          

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/ea8841e29393eaecef08aff834aaa8aa
Name:Modeled outputs of lake phosphorus from PGRNN when validated on segment 1
Description:Modeled outputs of lake phosphorus from PGRNN when validated on segment 1
Number of Records:7199
Number of Columns:1

Table Structure
Object Name:PGRNN_1.csv
Size:60542 byte
Authentication:336f22b9a03271350f2a6d8d85b06a3d Calculated By MD5
Text Format:
Number of Header Lines:0
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:output  
Definition:Process-guided recursive neural network model predicted lake phosphorus concentrations when validated on segment 1
Storage Type:float  
Measurement Type:ratio
Measurement Values Domain:
UnitgramsPerCubicMeter
Typereal
Min0.01 
Max0.16 
Missing Value Code:  
Accuracy Report:  
Accuracy Assessment:  
Coverage:  
Methods:  

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/55e5abeb63c9e8b1e526ce61b02e9085
Name:Modeled outputs of lake phosphorus from PGRNN when the ecological principal loss function was not included
Description:Modeled outputs of lake phosphorus from PGRNN when the ecological principal loss function was not included
Number of Records:7199
Number of Columns:1

Table Structure
Object Name:PGRNN_10.csv
Size:187200 byte
Authentication:b7afbcadb083a7cf1ade122761d4d55c Calculated By MD5
Text Format:
Number of Header Lines:0
Record Delimiter:\r\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:output  
Definition:Process-guided recursive neural network model predicted lake phosphorus concentrations when ecological principal loss function was not included
Storage Type:float  
Measurement Type:ratio
Measurement Values Domain:
UnitgramsPerCubicMeter
Typereal
Min0.01 
Max0.18 
Missing Value Code:  
Accuracy Report:  
Accuracy Assessment:  
Coverage:  
Methods:  

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/d434bcd71abba4515d70b825ed899766
Name:Modeled outputs of lake phosphorus from PGRNN when validated on segment 2
Description:Modeled outputs of lake phosphorus from PGRNN when validated on segment 2
Number of Records:7199
Number of Columns:1

Table Structure
Object Name:PGRNN_2.csv
Size:61180 byte
Authentication:9b77865a18e8cae203fd1e728e166828 Calculated By MD5
Text Format:
Number of Header Lines:0
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:output  
Definition:Process-guided recursive neural network model predicted lake phosphorus concentrations when validated on segment 2
Storage Type:float  
Measurement Type:ratio
Measurement Values Domain:
UnitgramsPerCubicMeter
Typereal
Min0.02 
Max0.16 
Missing Value Code:  
Accuracy Report:  
Accuracy Assessment:  
Coverage:  
Methods:  

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/5d24677c007f5655ed53fdb745968673
Name:Modeled outputs of lake phosphorus from PGRNN when validated on segment 3
Description:Modeled outputs of lake phosphorus from PGRNN when validated on segment 3
Number of Records:7199
Number of Columns:1

Table Structure
Object Name:PGRNN_3.csv
Size:60429 byte
Authentication:4899f440d89e644451adeac7bc4539eb Calculated By MD5
Text Format:
Number of Header Lines:0
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:output  
Definition:Process-guided recursive neural network model predicted lake phosphorus concentrations when validated on segment 3
Storage Type:float  
Measurement Type:ratio
Measurement Values Domain:
UnitgramsPerCubicMeter
Typereal
Min0.03 
Max0.15 
Missing Value Code:  
Accuracy Report:  
Accuracy Assessment:  
Coverage:  
Methods:  

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/f03ab050558314ca18ff24ffca990e28
Name:Modeled outputs of lake phosphorus from PGRNN when validated on segment 4
Description:Modeled outputs of lake phosphorus from PGRNN when validated on segment 4
Number of Records:7199
Number of Columns:1

Table Structure
Object Name:PGRNN_4.csv
Size:60413 byte
Authentication:9722a6353d2dab96e28689e238eacb32 Calculated By MD5
Text Format:
Number of Header Lines:0
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:output  
Definition:Process-guided recursive neural network model predicted lake phosphorus concentrations when validated on segment 4
Storage Type:float  
Measurement Type:ratio
Measurement Values Domain:
UnitgramsPerCubicMeter
Typereal
Min0.01 
Max0.16 
Missing Value Code:  
Accuracy Report:  
Accuracy Assessment:  
Coverage:  
Methods:  

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/3dede28017188789409374e8fe38c0da
Name:Modeled outputs of lake phosphorus from PGRNN when validated on segment 5
Description:Modeled outputs of lake phosphorus from PGRNN when validated on segment 5
Number of Records:7199
Number of Columns:1

Table Structure
Object Name:PGRNN_5.csv
Size:60402 byte
Authentication:d9d1ea12e41dfbc11f536d7f534d1d08 Calculated By MD5
Text Format:
Number of Header Lines:0
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:output  
Definition:Process-guided recursive neural network model predicted lake phosphorus concentrations when validated on segment 5
Storage Type:float  
Measurement Type:ratio
Measurement Values Domain:
UnitgramsPerCubicMeter
Typereal
Min0.01 
Max0.16 
Missing Value Code:  
Accuracy Report:  
Accuracy Assessment:  
Coverage:  
Methods:  

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/98f912d639c4490923f6fd310df6fc68
Name:Modeled outputs of lake phosphorus from PGRNN when validated on segment 6
Description:Modeled outputs of lake phosphorus from PGRNN when validated on segment 6
Number of Records:7199
Number of Columns:1

Table Structure
Object Name:PGRNN_6.csv
Size:60207 byte
Authentication:6dbfb9534dafbb66fe70f3d13fe4721d Calculated By MD5
Text Format:
Number of Header Lines:0
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:output  
Definition:Process-guided recursive neural network model predicted lake phosphorus concentrations when validated on segment 6
Storage Type:float  
Measurement Type:ratio
Measurement Values Domain:
UnitgramsPerCubicMeter
Typereal
Min0.01 
Max0.15 
Missing Value Code:  
Accuracy Report:  
Accuracy Assessment:  
Coverage:  
Methods:  

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/3b6177f2b596f936a66dacb811a647c0
Name:Modeled outputs of lake phosphorus from RNN when validated on segment 1
Description:Modeled outputs of lake phosphorus from RNN when validated on segment 1
Number of Records:7199
Number of Columns:1

Table Structure
Object Name:RNN_1.csv
Size:60322 byte
Authentication:e19caa484832835a4a0ad07f6d092176 Calculated By MD5
Text Format:
Number of Header Lines:0
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:output  
Definition:Recursive neural network model predicted lake phosphorus concentrations when validated on segment 1
Storage Type:float  
Measurement Type:ratio
Measurement Values Domain:
UnitgramsPerCubicMeter
Typereal
Min0.02 
Max0.19 
Missing Value Code:  
Accuracy Report:  
Accuracy Assessment:  
Coverage:  
Methods:  

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/588b97ca0669d899ece8969b8f89a743
Name:Modeled outputs of lake phosphorus from RNN when validated on segment 2
Description:Modeled outputs of lake phosphorus from RNN when validated on segment 2
Number of Records:7199
Number of Columns:1

Table Structure
Object Name:RNN_2.csv
Size:60685 byte
Authentication:828687caad53984aa868f2d7ebf12cc0 Calculated By MD5
Text Format:
Number of Header Lines:0
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:output  
Definition:Recursive neural network model predicted lake phosphorus concentrations when validated on segment 2
Storage Type:float  
Measurement Type:ratio
Measurement Values Domain:
UnitgramsPerCubicMeter
Typereal
Min-0.01 
Max0.2 
Missing Value Code:  
Accuracy Report:  
Accuracy Assessment:  
Coverage:  
Methods:  

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/6bc95318ca7624b39caaf014449d9bca
Name:Modeled outputs of lake phosphorus from RNN when validated on segment 3
Description:Modeled outputs of lake phosphorus from RNN when validated on segment 3
Number of Records:7199
Number of Columns:1

Table Structure
Object Name:RNN_3.csv
Size:60387 byte
Authentication:f8552e29905a39ac75163254b9d49541 Calculated By MD5
Text Format:
Number of Header Lines:0
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:output  
Definition:Recursive neural network model predicted lake phosphorus concentrations when validated on segment 3
Storage Type:float  
Measurement Type:ratio
Measurement Values Domain:
UnitgramsPerCubicMeter
Typereal
Min-0.01 
Max0.21 
Missing Value Code:  
Accuracy Report:  
Accuracy Assessment:  
Coverage:  
Methods:  

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/285dd21f796a191ab18b05afafad7846
Name:Modeled outputs of lake phosphorus from RNN when validated on segment 4
Description:Modeled outputs of lake phosphorus from RNN when validated on segment 4
Number of Records:7199
Number of Columns:1

Table Structure
Object Name:RNN_4.csv
Size:60160 byte
Authentication:30bfacb30975398ce840c508ed90ef6c Calculated By MD5
Text Format:
Number of Header Lines:0
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:output  
Definition:Recursive neural network model predicted lake phosphorus concentrations when validated on segment 4
Storage Type:float  
Measurement Type:ratio
Measurement Values Domain:
UnitgramsPerCubicMeter
Typereal
Min-0.01 
Max0.19 
Missing Value Code:  
Accuracy Report:  
Accuracy Assessment:  
Coverage:  
Methods:  

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/74b0b7dce8424be975edf5cd944cd10f
Name:Modeled outputs of lake phosphorus from RNN when validated on segment 5
Description:Modeled outputs of lake phosphorus from RNN when validated on segment 5
Number of Records:7199
Number of Columns:1

Table Structure
Object Name:RNN_5.csv
Size:60370 byte
Authentication:ba382c8237f6661ff1b474607a5ea91d Calculated By MD5
Text Format:
Number of Header Lines:0
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:output  
Definition:Recursive neural network model predicted lake phosphorus concentrations when validated on segment 5
Storage Type:float  
Measurement Type:ratio
Measurement Values Domain:
UnitgramsPerCubicMeter
Typereal
Min
Max0.18 
Missing Value Code:  
Accuracy Report:  
Accuracy Assessment:  
Coverage:  
Methods:  

Data Table

Data:https://pasta-s.lternet.edu/package/data/eml/edi/141/2/7a20b1db5c86401d9a583afbc45f4bae
Name:Modeled outputs of lake phosphorus from RNN when validated on segment 6
Description:Modeled outputs of lake phosphorus from RNN when validated on segment 6
Number of Records:7199
Number of Columns:1

Table Structure
Object Name:RNN_6.csv
Size:59818 byte
Authentication:3c3b25e8a732fd6666db0ec8f7b567ee Calculated By MD5
Text Format:
Number of Header Lines:0
Record Delimiter:\n
Orientation:column
Simple Delimited:
Field Delimiter:,

Table Column Descriptions
 
Column Name:output  
Definition:Recursive neural network model predicted lake phosphorus concentrations when validated on segment 6
Storage Type:float  
Measurement Type:ratio
Measurement Values Domain:
UnitgramsPerCubicMeter
Typereal
Min
Max0.17 
Missing Value Code:  
Accuracy Report:  
Accuracy Assessment:  
Coverage:  
Methods:  

Data Package Usage Rights

This data package is released to the “public domain” under Creative Commons CC0 1.0 “No Rights Reserved” (see: https://creativecommons.org/publicdomain/zero/1.0/). It is considered professional etiquette to provide attribution of the original work if this data package is shared in whole or by individual components. A generic citation is provided for this data package on the website https://portal.edirepository.org (herein “website”) in the summary metadata page. Communication (and collaboration) with the creators of this data package is recommended to prevent duplicate research or publication. This data package (and its components) is made available “as is” and with no warranty of accuracy or fitness for use. The creators of this data package and the website shall not be liable for any damages resulting from misinterpretation or misuse of the data package or its components. Periodic updates of this data package may be available from the website. Thank you.

Keywords

By Thesaurus:
(No thesaurus)Lake Mendota, phosphorus, models, modeling, lakes

Methods and Protocols

These methods, instrumentation and/or protocols apply to all data in this dataset:

Methods and protocols used in the collection of this data package
Description:

The analytical approach blends an ecosystem process model (PROCESS) with the machine learning technology, recurrent neural networks (RNN). When combined, they are an implementation of TGDS that we term a process-guided recurrent neural network (PGRNN). PROCESS is a mass-balance model that tracks three different pools of phosphorus (P) within the lake system: epilimnetic P, hypolimnetic P, and sediment P. The RNN maps pattern in the response variable to a suite of driving variables as a "black box" model. PGRNN includes the output of PROCESS as an input to the neural network, unlike RNN, which uses only the observational data as an input. PGRNN weights the PROCESS predictions along with other drivers, allowing for the possibility of adjusting or eliminating PROCESS as a driver. PGRNN also includes the ecological principle of power scaling across the time domain in its loss function to constrain its predictions to ecologically reasonable values. The loss function penalizes PGRNN predictions when daily deviations exceed 80% of the deviations at the ~bi-weekly scale in the observed data and penalizes large discrepancies between the power spectra of the predicted and observed values. We fit all models to epilimnetic P concentration, which was sampled approximately monthly for 20 years. The observed time series was divided into six equal segments. Models were validated with one segment and were fit independently to the other five segments.

People and Organizations

Creators:
Individual: Paul C Hanson
Organization:University of Wisconsin-Madison, Center for Limnology
Email Address:
pchanson@wisc.edu
Id:https://orcid.org/0000-0001-8533-6061
Individual: Aviah B Stillman
Organization:University of Wisconsin-Madison, Center for Limnology
Email Address:
aviah.stillman@gmail.com
Contacts:
Individual: Paul C Hanson
Organization:University of Wisconsin-Madison, Center for Limnology
Email Address:
pchanson@wisc.edu
Id:https://orcid.org/0000-0001-8533-6061

Temporal, Geographic and Taxonomic Coverage

Temporal, Geographic and/or Taxonomic information that applies to all data in this dataset:

Time Period
Begin:
1995-05-09
End:
2015-12-31

Project

Parent Project Information:

Title:CNH-L: Linking Land-Use Decision Making, Water Quality, and Lake Associations to Understand Human-Natural Feedbacks in Lake Catchments
Personnel:
Individual: Paul Hanson
Email Address:
pchanson@wisc.edu
Id:https://orcid.org/0000-0001-8533-6061
Role:Principal Investigator
Funding: National Science Foundation (NSF): 1517823

Maintenance

Maintenance:
Description:completed
Frequency:
Other Metadata

Additional Metadata

additionalMetadata
        |___text '\n    '
        |___element 'metadata'
        |     |___text '\n      '
        |     |___element 'unitList'
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'millimolesPerMeterCubed'
        |     |     |     |  \___attribute 'multiplierToSI' = '0.001'
        |     |     |     |  \___attribute 'name' = 'millimolesPerMeterCubed'
        |     |     |     |  \___attribute 'parentSI' = 'molesPerMeterCubed'
        |     |     |     |  \___attribute 'unitType' = 'amountOfSubstanceDensity'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |     |___text 'millimoles per meter cubed'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'wattPerMeterSquared'
        |     |     |     |  \___attribute 'multiplierToSI' = '1'
        |     |     |     |  \___attribute 'name' = 'wattPerMeterSquared'
        |     |     |     |  \___attribute 'parentSI' = 'wattPerMeterSquared'
        |     |     |     |  \___attribute 'unitType' = 'arealEnergyFlux'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |     |___text 'watts per meter squared'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'cubicMetersPerDay'
        |     |     |     |  \___attribute 'multiplierToSI' = '0.00001157407'
        |     |     |     |  \___attribute 'name' = 'cubicMetersPerDay'
        |     |     |     |  \___attribute 'parentSI' = 'cubicMetersPerSecond'
        |     |     |     |  \___attribute 'unitType' = 'volumetricRate'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |     |___text 'cubic meters per day'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'gramsPerSecond'
        |     |     |     |  \___attribute 'multiplierToSI' = '0.00000001157407'
        |     |     |     |  \___attribute 'name' = 'gramsPerSecond'
        |     |     |     |  \___attribute 'parentSI' = 'kilogramsPerSecond'
        |     |     |     |  \___attribute 'unitType' = 'massRate'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |     |___text 'grams per day'
        |     |     |     |___text '\n        '
        |     |     |___text '\n        '
        |     |     |___element 'unit'
        |     |     |     |  \___attribute 'id' = 'gramsPerCubicMeter'
        |     |     |     |  \___attribute 'multiplierToSI' = '0.001'
        |     |     |     |  \___attribute 'name' = 'gramsPerCubicMeter'
        |     |     |     |  \___attribute 'parentSI' = 'kilogramsPerCubicMeter'
        |     |     |     |  \___attribute 'unitType' = 'density'
        |     |     |     |___text '\n          '
        |     |     |     |___element 'description'
        |     |     |     |     |___text 'grams per cubic meter'
        |     |     |     |___text '\n        '
        |     |     |___text '\n      '
        |     |___text '\n    '
        |___text '\n  '

EDI is a collaboration between the University of New Mexico and the University of Wisconsin – Madison, Center for Limnology:

UNM logo UW-M logo